Algoritmos y Estructuras de Datos II

Ordenación

7 de marzo de 2016

Contenidos

- Introducción
- Motivación
- 3 Ordenación por selección
 - Algoritmo
 - Ejemplo
 - Comando for
 - Análisis
- 4 Número de operaciones de un comando (función ops)
- Ordenación por inserción
 - Ejemplo
 - Algoritmo
 - Análisis
- 6 Resumen

Generalidades

Toda la información sobre la materia se encuentra en la wiki, accesible desde cs.famaf.unc.edu.ar/wiki

Algoritmos y Estructuras de Datos

- Introducción a los Algoritmos Algoritmos y Estructuras de Datos I
 - pre- y post- condiciones
 - "qué" hace un algoritmo
- Algoritmos y Estructuras de Datos II
 - "cómo" hace el algoritmo

Ejemplo de "qué" y "cómo" de un algoritmo

Ejemplo:

un algoritmo para contar los ceros de un arreglo de enteros.

- "Qué": devuelve (o cuenta o computa) el número de ocurrencias del número 0 en el arreglo dado.
- "Cómo": recorre el arreglo de izquierda a derecha incrementando un contador cada vez que observa un 0.

Análisis de algoritmos

Analizar el "cómo" permite

- predecir el tiempo de ejecución (eficiencia en tiempo)
- predecir el uso de memoria (eficiencia en espacio)
- predecir el uso de otros recursos
- comparar distintos algoritmos para un mismo problema

Organización de la materia

La materia está organizada en tres partes:

- Análisis de algoritmos.
 - Cómo se ejecutan los algoritmos y estimar cuánto trabajo realiza.
- Estructuras de datos.
 - Tipos de datos concretos y abstractos.
- Algoritmos avanzados.
 - Algunas técnicas para resolver problemas algorítmicos.

Problema del pintor

Un pintor tarda una hora y media en pintar una pared de 3 metros de largo. ¿Cuánto tardará en pintar una de 5 metros de largo?

```
3 \text{ metros} \longleftrightarrow 90 \text{ minutos}
1 \text{ metro} \longleftrightarrow 30 \text{ minutos}
5 \text{ metros} \longleftrightarrow 150 \text{ minutos}
```

Solución: dos horas y media.

El trabajo de pintar la pared es **proporcional** a su longitud.

Problema del bibliotecario

Un bibliotecario tarda un día en ordenar alfabéticamente una biblioteca con 1000 expedientes. ¿Cuánto tardará en ordenar una con 2000 expedientes?

Razonamiento similar

1000 expedientes \longleftrightarrow 1 día 2000 expedientes \longleftrightarrow 2 días

Solución: dos días.

¿Está bien? ¿Es el trabajo de ordenar expedientes **proporcional** a la cantidad de expedientes a ordenar?

Otros problemas

Un pintor tarda una hora y media en pintar una pared **cuadrada** de 3 metros de lado. ¿Cuánto tardará en pintar una de 5 metros de lado?

```
9 metros cuadrados ←→ 90 minutos
1 metro cuadrado ←→ 10 minutos
25 metros cuadrados ←→ 250 minutos
```

Solución: cuatro horas y 10 minutos.

El trabajo de pintar la pared cuadrada es **proporcional** a su superficie, que es proporcional al cuadrado del lado.

Otros problemas el del globo esférico

Si lleva cinco horas inflar un globo aerostático esférico de 2 metros de diámetro, ¿cuánto llevará inflar uno de 4 metros de diámetro?

Resumen

El trabajo de inflar el globo es **proporcional** a su volumen, que es proporcional al cubo del diámetro ($V = \frac{\pi d^3}{6}$).

Solución: cuarenta horas.

Algoritmos de ordenación

Para resolver el problema del bibliotecario, es necesario

- establecer a qué es proporcional la tarea de ordenar expedientes,
- estudiar métodos de ordenación,
- asumiremos la existencia de elementos o items a ordenar,
- relacionados por un orden total,
- que deben ordenarse de menor a mayor y
- que no necesariamente son diferentes entre sí.

¿Cómo?

Reflexionemos sobre lo siguiente:

- ¿Qué significa que una secuencia de libros, números, palabras, etc. esté ordenada?
- ¿Cómo hacen para controlar si una secuencia de números está ordenada?
 - (a esta pregunta la vamos a continuar en el práctico y en el laboratorio)
- ¿Cómo harían para ordenar de menor a mayor ciertos datos o ciertas cosas físicas que están desordenados/as?
 - números
 - cartas de un juego,
 - palabras,
 - libros.

Ordenación por selección Idea

- Es el algoritmo de ordenación más sencillo (pero no el más rápido),
- selecciona el menor de todos, lo coloca en el primer lugar apartándolo del resto,
- selecciona el menor de todos los restantes, lo coloca en el segundo lugar apartándolo del resto,
- selecciona el menor de todos los restantes, lo coloca en el tercer lugar apartándolo del resto,
- ...(en cada uno de estos pasos ordena un elemento) ...
- hasta terminar.

Ordenación por selección Ejemplo

9	3	1	3	5	2	7
9	3	1	3	5	2	7
1	3	9	3	5	2	7
1	3	9	3	5	2	7
1	2	9	3	5	3	7
1	2	9	3	5	3	7
1	2	3	9	5	3	7

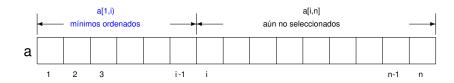
1	2	3	9	5	3	7
1	2	3	3	5	9	7
1	2	3	3	5	9	7
1	2	3	3	5	9	7
1	2	3	3	5	9	7
1	2	3	3	5	7	9

Algoritmo Ejemplo Comando for Análisis

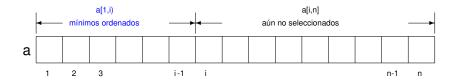
Demo (www.sorting-algorithms.com)

Resumen

Ordenación por selección En un arreglo



Ordenación por selección Invariante



Invariante:

- el arreglo a es una permutación del original,
- un segmento inicial a[1,i) del arreglo está ordenado, y
- dicho segmento contiene los elementos mínimos del arreglo.

Ordenación por selección Pseudocódigo

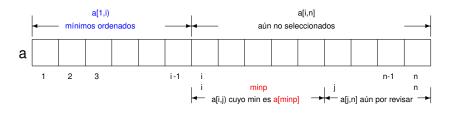
```
{Pre: n > 0 \land a = A}
proc selection sort (in/out a: array[1..n] of T)
     var i, minp: nat
     i:=1
                                         {Inv: Invariante de recién}
     do i < n \rightarrow minp:= min pos from(a,i)
                  swap(a,i,minp)
                  i = i + 1
     od
end proc
{Post: a está ordenado y es permutación de A}
```

Ordenación por selección Swap o intercambio

```
{Pre: a = A \land 1 < i, i < n }
proc swap (in/out a: array[1..n] of T, in i,j: nat)
      var tmp: T
      tmp:= a[i]
      a[i]:=a[i]
      a[i]:= tmp
end proc
{Post: a[i] = A[i] \land a[i] = A[i] \land \forall k. k \notin \{i,j\} \Rightarrow a[k] = A[k]}
¡Garantiza permutación!
```

Ordenación por selección

Invariante de la función de selección



- Invariante:
 - invariante anterior, y
 - el mínimo del segmento a[i,j) está en la posición minp.

Ordenación por selección

```
{Pre: 0 < i < n}
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    var i: nat
    minp:= i
    i := i + 1
                                {Inv: a[minp] es el mínimo de a[i,i)}
    do j \le n \rightarrow if a[j] < a[minp] then minp:= j fi
                 i := i + 1
    od
end fun
{Post: a[minp] es el mínimo de a[i,n]}
```

Comando for

Fragmentos de la siguiente forma aparecen con frecuencia:

$$\begin{aligned} &k \! := n \\ & \text{do } k \leq m \rightarrow C \\ & \qquad \qquad k \! := k \! + \! 1 \\ & \text{od} \end{aligned}$$

Por simplicidad, lo reemplazaremos por

siempre que k no se modifique en C.

Además, asumiremos que el **for** declara la variable k, cuya vida dura sólo durante la ejecución del ciclo.

Algoritmo Ejemplo Comando for Análisis

Comando for

Reemplazo en min_pos_from

```
fun min_pos_from (a: array[1..n] of T, i: nat) ret minp: nat
    var i: nat
    minp:= i
    i := i + 1
    do j \le n \rightarrow if a[j] < a[minp] then minp:= j fi
                 i := i + 1
    od
end fun
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    minp:= i
    for j:=i+1 to n do if a[j] < a[minp] then minp:= j fi
    od
end fun
```

Comando for

Reemplazo en selection_sort

```
\begin{array}{c} \textbf{proc} \ selection\_sort \ (\textbf{in/out} \ a: \ \textbf{array}[1..n] \ \textbf{of} \ \textbf{T}) \\ \textbf{var} \ \textbf{i}, \ minp: \ \textbf{nat} \\ \textbf{i:=1} \\ \textbf{do} \ \textbf{i} < \textbf{n} \rightarrow minp:= min\_pos\_from(a,i) \\ swap(a,i,minp) \\ \textbf{i:=i+1} \\ \textbf{od} \\ \textbf{end} \ \textbf{proc} \end{array}
```

Comando for En selection sort

```
proc selection sort (in/out a: array[1..n] of T)
     var minp: nat
     for i = 1 to n-1 do
        minp:= min pos from(a,i)
        swap(a,i,minp)
     od
end proc
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    minp:= i
    for j:=i+1 to n do if a[j] < a[minp] then minp:= i fi
    od
end fun
```

Problema del bibliotecario

Cuando el algoritmo es la ordenación por selección

- ¿Cómo se respondería el problema del bibliotecario si el algoritmo utilizado por él fuera el de ordenación por selección?
- ¿Cuánto más trabajo resulta ordenar 2000 expedientes que 1000 con este algoritmo?
- ¿Cuánto trabajo es ordenar 2000 expedientes (con este algoritmo)?
- ¿Cuánto trabajo es ordenar 1000 expedientes (con este algoritmo)?
- ¿Cuánto trabajo es ordenar n expedientes (con este algoritmo)?

Problema del bibliotecario Análisis

- Para contestar estas preguntas habría que analizar el algoritmo de ordenación por selección, es decir, contar cuántas operaciones elementales realiza.
- Cuántas sumas, asignaciones, llamadas a funciones, comparaciones, intercambios, etc.
- En vez de eso, se elige una operación representativa.
- ¿Qué es una operación representativa?
- Una tal que se repite más que o tanto como cualquier otra.
- Hay que buscar la que más se repite.

Algoritmo Ejemplo Comando for Análisis

Analizando el procedimiento selection_sort

- selection_sort contiene un ciclo,
- allí debe estar la operación que más se repite,
- encontramos una llamada a la función min_pos_from y una llamada al procedimiento swap,
- el procedimiento swap es constante (siempre realiza 3 asignaciones elementales),
- la función min_pos_from, en cambio, tiene un ciclo,
- nuevamente allí debe estar la operación que más se repite,
- encontramos una comparación entre elementos de a, y una asignación (condicionada al resultado de la comparación).

Algoritmo Ejemplo Comando for Análisis

Analizando ordenación por selección Conclusión

- La operación que más se repite es la comparación entre elementos de a,
- toda otra operación se repite a lo sumo de manera proporcional a esa,
- por lo tanto, la comparación entre elementos de a es representativa del trabajo de la ordenación por selección.
- Esto es habitual: para medir la eficiencia de los algoritmos de ordenación es habitual considerar el número de comparaciones entre elementos del arreglo.
- Veremos luego que acceder (o modificar) una celda de un arreglo es constante: su costo no depende de cuál es la celda, ni de la longitud del arreglo.

¿Cuántas comparaciones realiza la ordenación por selección?

- Al llamarse a min_pos_from(a,i) se realizan n-i comparaciones.
- selection_sort llama a min_pos_from(a,i) para $i \in \{1, 2, ..., n-1\}$.
- por lo tanto, en total son (n-1) + (n-2) + ... + (n-(n-1)) comparaciones.
- es decir, $(n-1) + (n-2) + ... + 1 = \frac{n*(n-1)}{2}$ comparaciones.

Algoritmo Ejemplo Comando for Análisis

Resolviendo el problema del bibliotecario Con la fórmula obtenida

Para un arreglo de tamaño n, son $\frac{n_*(n-1)}{2}$ comparaciones.

1000 expedientes
$$\longleftrightarrow$$
 499500 comparaciones \longleftrightarrow 1 día 2000 expedientes \longleftrightarrow 1999000 comparaciones \longleftrightarrow 4 días

Solución: 4 días.

Resolviendo el problema del bibliotecario

Con una fórmula simplificada

Como
$$\frac{n_*(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2},$$
 el número de comparaciones es proporcional $n^2.$

1000 expedientes
$$\longleftrightarrow$$
 1000000 comparaciones \longleftrightarrow 1 día 2000 expedientes \longleftrightarrow 4000000 comparaciones \longleftrightarrow 4 días

Solución: 4 días.

Conviene utilizar la expresión n² para contestar la pregunta; es más sencillo y da el mismo resultado.

Número de operaciones de un comando

- Una vez que uno sabe qué operación quiere contar, debe imaginar una ejecución arbitraria, genérica del comando intentando contar el número de veces que esa ejecución arbitraria realizará dicha operación.
- Ése es el verdadero método para contar.
- Es imprescindible comprender cómo se ejecuta el comando.
- A modo de ayuda, en las filminas que siguen se da un método imperfecto para ir aprendiendo.
- El método supone que ya sabemos cuál operación queremos contar.

Número de operaciones de un comando Secuencia de comandos

- Una secuencia de comandos se ejecuta de manera secuencial, del primero al último.
- La secuencia se puede escribir horizontalmente:
 C₁:C₂:...:C_n
- o verticalmente

Número de operaciones de un comando Secuencia de comandos

- Para contar cuántas veces se ejecuta la operación, entonces, se cuenta cuántas veces se ejecuta en el primero, cuántas en el segundo, etc. y luego se suman los números obtenidos:
- $ops(C_1; C_2; ...; C_n) = ops(C_1) + ops(C_2) + ... + ops(C_n)$

$$\bullet \ \mathsf{ops} \left(\begin{array}{c} \mathsf{C}_1 \\ \mathsf{C}_2 \\ \vdots \\ \mathsf{C}_n \end{array} \right) = \mathsf{ops}(\mathsf{C}_1) + \mathsf{ops}(\mathsf{C}_2) + \ldots + \mathsf{ops}(\mathsf{C}_n)$$

Número de operaciones de un comando Comando skip

- El comando skip equivale a una secuencia vacía:
- ops(skip) = 0

Número de operaciones de un comando Comando for

- El comando for k:= n to m do C(k) od "equivale" también a una secuencia:
- for k:= n to m do C(k) od "equivale" a

```
C(n)
C(n+1)
:
C(m)
```

Número de operaciones de un comando Comando for

De esta "equivalencia" resulta

$$\begin{aligned} & ops(\textbf{for k:= n to m do } C(k) \textbf{ od}) = \\ & = ops(C(n)) + ops(C(n+1)) + \ldots + ops(C(m)) \end{aligned}$$

que también se puede escribir

$$ops(\textbf{for } k := n \textbf{ to } m \textbf{ do } C(k) \textbf{ od}) = \sum_{k=n}^{m} ops(C(k))$$

Número de operaciones de un comando Comando for (una salvedad importante)

La ecuación

$$ops(\textbf{for } k := n \textbf{ to } m \textbf{ do } C(k) \textbf{ od}) = \sum_{k=n}^{m} ops(C(k))$$

solamente vale cuando **no hay interés en contar las operaciones que involucran el índice k** implícitas en el **for**: inicialización, comparación con la cota m, incremento; ni el cómputo de los límites n y m. Por eso escribimos "equivale" entre comillas. En los apuntes hay otras ecuaciones posibles para el caso en que sí deseen contarse.

Número de operaciones de un comando Comando condicional if

- El comando if b then C else D fi se ejecuta evaluando la condición b y luego, en función del valor de verdad que se obtenga, ejecutando C (caso verdadero) o D (caso falso).
- Para contar cuántas veces se ejecuta la operación, entonces, se cuenta cuántas veces se la ejecuta durante la evaluación de b y luego cuántas en la ejecución de C o D

• ops(if b then C else D fi) =
$$\begin{cases} ops(b)+ops(C) & b \text{ es V} \\ ops(b)+ops(D) & b \text{ es F} \end{cases}$$

Número de operaciones de un comando Asignación

 El comando x:=e se ejecuta evaluando la expresión e y modificando la posición de memoria donde se aloja la variable x con el valor de e.

•

$$ops(x{:=}e) = \left\{ \begin{array}{ll} ops(e){+}1 & \text{ si se desea contar la asignación} \\ o \text{ las modificaciones de memoria} \\ ops(e) & \text{ en caso contrario} \end{array} \right.$$

 Tener en cuenta que la evaluación de e puede implicar la llamada a funciones auxiliares cuyas operaciones deben ser también contadas.

Número de operaciones de un comando El ciclo do

- El ciclo do b → C od (o equivalente while b do C od) se ejecuta evaluando la condición b, y dependiendo de si su valor es V o F se continúa de la siguiente manera:
 - si su valor fue F, la ejecución termina inmediatamente
 - si su valor fue V, la ejecución continúa con la ejecución del cuerpo C del ciclo, y luego de eso vuelve a ejecutarse todo el ciclo nuevamente.
- Es decir que su ejecución es una secuencia de evaluaciones de la condición b y ejecuciones del cuerpo C que finaliza con la primera evaluación de b que dé F.

Número de operaciones de un comando El ciclo do

```
Es decir, la ejecución del ciclo do b \rightarrow C od "equivale" a la
eiecución de
if b then C
         if b then C
                    if b then C
                              if b then C
                                        ...;; indefinidamente!!
                              else skip
                    else skip
         else skip
else skip
```

Número de operaciones de un comando El ciclo do

$$ops(\mathbf{do} b \to C \mathbf{od}) = ops(b) + \sum_{k=1}^{n} d_{k}$$

donde

- n es el número de veces que se ejecuta el cuerpo del do
- d_k es el número de operaciones que realiza la k-ésima ejecución del cuerpo C del ciclo y la subsiguiente evaluación de la condición o guarda b

Número de operaciones de una expresión

- Similares ecuaciones se pueden obtener para la evaluación de expresiones.
- Por ejemplo, para evaluar la expresión e<f, primero se evalúa la expresión e, luego se evalúa la expresión f y luego se comparan dichos valores.

•

$$ops(e < f) = \begin{cases} ops(e) + ops(f) + 1 & si se cuentan comparaciones \\ ops(e) + ops(f) & caso contrario \end{cases}$$

Ejemplo: número de comparaciones de la ordenación por selección

```
proc selection sort (in/out a: array[1..n] of T)
     var minp: nat
     for i := 1 to n-1 do
        minp:= min pos from(a,i)
        swap(a,i,minp)
     od
end proc
fun min pos from (a: array[1..n] of T, i: nat) ret minp: nat
    minp:= i
    for j:=i+1 to n do if a[j] < a[minp] then minp:= j fi
    od
end fun
```

Ejemplo: número de comparaciones de la ordenación por selección

$$\begin{split} \text{ops}(\text{selection_sort}(a)) &= \sum_{i=1}^{n-1} \text{ ops}(\text{min_pos_from}(a,i)) \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \text{ ops}(a[j] < a[\text{minp}]) \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1 \\ &= \sum_{i=1}^{n-1} (\text{n--}i) \\ &= \sum_{i=1}^{n-1} i \\ &= \frac{n^*(n-1)}{2} \\ &= \frac{n^2}{2} - \frac{n}{2} \end{split}$$

Ordenación

Ejemplo: número de intercambios de la ordenación por selección

$$\begin{array}{l} \text{ops(selection_sort(a))} = \sum_{i=1}^{n-1} \text{ops(swap(a,i,minp))} \\ = \sum_{i=1}^{n-1} \mathbf{1} \\ = n\text{-}1 \end{array}$$

Conclusión del ejemplo

- Número de comparaciones de la ordenación por selección: $\frac{n^2}{2} \frac{n}{2}$
- Número de intercambios de la ordenación por selección: n-1
- Esto significa que la operación de intercambio no es representativa del comportamiento de la ordenación por selección, ya que el número de comparaciones crece más que proporcionalmente respecto a los intercambios.
- Por otro lado, pudimos contar las operaciones de manera exacta.

Ordenación por inserción

- No siempre es posible contar el número exacto de operaciones.
- Un ejemplo de ello lo brinda otro algoritmo de ordenación: la ordenación por inserción.
- Es un algoritmo que se utiliza por ejemplo en juegos de cartas, cuando es necesario mantener un gran número de cartas en las manos, en forma ordenada.
- Cada carta que se levanta de la mesa, se inserta en el lugar correspondiente entre las que ya están en las manos, manteniendolas ordenadas.

Ejemplo Algoritmo Análisis

Ordenación por inserción Ejemplo

9	3	1	3	5	2	7
9	3	1	3	5	2	7
3	9	1	3	5	2	7
3	1	9	3	5	2	7
1	3	9	3	5	2	7
1	3	3	9	5	2	7
1	3	3	5	9	2	7

1	3	3	5	2	9	7
1	3	3	2	5	9	7
1	3	2	3	5	9	7
1	2	3	3	5	9	7
1	2	3	3	5	7	9

Ejemplo Algoritmo Análisis

Demo (www.sorting-algorithms.com)

Ordenación por inserción En un arreglo

Ordenación por inserción Invariante

Invariante:

- el arreglo a es una permutación del original y
- un segmento inicial a[1,i) del arreglo está ordenado.
- (pero en general a[1,i) no contiene los mínimos del arreglo)

Ordenación por inserción Pseudocódigo

Ordenación por selección Invariante del procedimiento de inserción

Invariante:

- el arreglo a es una permutación del original
- a[1,i] sin celda j está ordenado, y
- a[j,i] también está ordenado.

Ordenación por inserción Procedimiento de inserción

```
{Pre: 0 < i \le n \land a = A}

proc insert (in/out a: array[1..n] of T, in i: nat)

var j: nat

j:=i
\{\text{Inv: Invariante de recién}\}
\text{do } j > 1 \land a[j] < a[j-1] \rightarrow \text{swap}(a,j-1,j)
j:=j-1

od

end proc

{Post: a[1,i] está ordenado \land a es permutación de A}
```

Ordenación por inserción Todo junto

```
proc insertion sort (in/out a: array[1..n] of T)
      for i = 2 to n do
         insert(a,i)
      od
end proc
proc insert (in/out a: array[1..n] of T, in i: nat)
      var i: nat
     i:= i
     do j > 1 \land a[j] < a[j-1] \to \text{swap}(a,j-1,j)
                                     i:= i-1
      od
end proc
```

Número de Comparaciones e intercambios Procedimiento insert(a,i)

	comp	araciones	intercambios	
si el valor de i es	mín	máx	mín	máx
2	1	1	0	1
3	1	2	0	2
4	1	3	0	3
i i	:	•••	:	:
n	1	n-1	0	n-1
total insertion_sort	n - 1	$\frac{n^2}{2} - \frac{n}{2}$	0	$\frac{n^2}{2} - \frac{n}{2}$

Ordenación por inserción, casos

- mejor caso: arreglo ordenado, n comparaciones y 0 intercambios.
- peor caso: arreglo ordenado al revés, n²/2 n/2
 comparaciones e intercambios, es decir, del orden de n².
- caso promedio: del orden de n².

Resumen

- Hemos analizado dos algoritmos de ordenación
 - ordenación por selección
 - ordenación por inserción
- la ordenación por selección hace siempre el mismo número de comparaciones, del orden de n².
- la ordenación por inserción también es del orden de n² en el peor caso (arreglo ordenado al revés) y en el caso medio,
- la ordenación por inserción es del orden de n en el mejor caso (arreglo ordenado),
- la ordenación por inserción realiza del orden de n² swaps (contra n de la ordenación por selección) en el peor caso.

Problema del bibliotecario

- Con cualquiera de los dos algoritmos la respuesta es 4 días,
- salvo que se trate de una biblioteca ya ordenada o casi ordenada, en cuyo caso:
 - ordenación por inserción es del orden de n,
 - y por ello la respuesta sería: 2 días.