CLASE 28/08/2013

DEFINICIÓN: RETICULADO ACOTADO

Es una estructura de tipo $\langle L, \bigotimes, \bigotimes, 0^L, 1^L \rangle$ tal que $\langle L, \bigotimes, \bigotimes \rangle$ es un reticulado, y además posee un elemento mínimo 0^L y uno máximo 1^L

DEFINICIÓN: COMPLEMENTO, RET. COMPLEMENTADO

Sea $\langle L, \bigotimes, \bigotimes, 0^L, 1^L \rangle$ un reticulado acotado, el elem. $a \in L$ es *complementado* cuando existe $b \in L$ tal que: $a \bigotimes b = 1$, $a \bigotimes b = 0$.

El reticulado se dice complementado si todos los elementos tienen complemento.

- ⇒ Pueden existir uno, varios o ningún complemento.
- \Longrightarrow EJEMPLOS: (1) $(\mathcal{P}(X), \cup, \cap, \emptyset, X)$, es complementado
- \implies (2) $(D_n, mcm, mcd, 1, n)$ es complementado sólo si n es producto de primos distintos NOTAR: si $n = p^2k$ entonces p no es complementado
- \implies (3) N_5 y M_3 son complementados pero no hay unicidad de complemento
- $\Longrightarrow N_5$ y M_3 no son distributivos

LEMA: DESIGUALDADES DISTRIBUTIVAS

 ${\it L}$ reticulado. Valen las desigualdades:

$$x \bigcirc (y \bigcirc z) \le (x \bigcirc y) \bigcirc (x \bigcirc z)$$

$$(x \bigcirc y) \bigcirc (x \bigcirc z) \le x \bigcirc (y \bigcirc z)$$

LEMA: $\langle L, \bigotimes, \bigotimes \rangle$ un reticulado; son equivalentes:

 $x \otimes (y \otimes z) = (x \otimes y) \otimes (x \otimes z)$, cualesquiera sean $x, y, z \in L$,

 $x \otimes (y \otimes z) = (x \otimes y) \otimes (x \otimes z)$, cualesquiera sean $x, y, z \in L$.

DEFINICIÓN: RET. DISTRIBUTIVO

Un reticulado se llamará distributivo cuando cumpla alguna de las propiedades del Lema.

- \implies EJEMPLOS (1) $\mathcal{P}(X)$ es distributivo (por teoría de conjuntos)
- \Longrightarrow (2) D_n es distributivo (prueba al final)
- \implies (3) N_5 y M_3 no son distributivos

LEMA. Si $\langle L, \bigotimes, \bigotimes, 0, 1 \rangle$ es un reticulado acotado y distributivo, entonces todo elemento tiene **a lo sumo** un complemento.

DEF. SUBRETICULADO

L, reticulado, $S \subseteq L$. El subconjunto. S se dice subreticulado si es cerrado para \vee y \wedge

\Longrightarrow EJEMPLO

 $(\{z, x, y, t\}, \leq_L)$ es poset reticulado pero no es subreticulado

LEMA. L, reticulado. Entonces L es disrtibutivo si y sólo si L no tiene a N_5 y M_3 como subreticulado

⇒ PROBLEMA ¿Cómo probar que un reticulado es distributivo?

LEMA

Todo subreticulado de un reticulado distributivo es distributivo

- ⇒ **Método**: embeber el reticulado en un reticulado de partes.
- \implies PRUEBA de " D_n es ditributivo" Sea $\{d, a, b, c, m\}$ el M_3 . Si $d = mcd\{a, b\}$ y $m = mcm\{a, b\}$, entonces ab = md. Idem con a, c. Así probar que b = c.