CLASE 06/09/2013

DEFINICIÓN (P, \leq) **cpo**

Diremos que $D \subseteq P$ es decreciente si para todo $x, z \in P$ se tiene $x \in D$ y $z \le x \implies z \in D$.

 $\mathcal{D}(P) = \{ D \subseteq P : D \text{ es decreciente} \}.$

 $\langle \mathcal{D}(P), \cup, \cap, \emptyset, P \rangle$. es ret. distributivo

 \Longrightarrow Dado un L reticulado distributivo finito,

¿Existe P poset tal que L es isomorfo a $\mathcal{D}(P)$?

DEFINICIÓN L reticulado acotado.

Un elemento $x \in L$ será llamado \bigcirc -irreducible (o simplemente irreducible) si

 $x \neq 0$, y si $x = y \bigcirc z$, entonces x = y o x = z, para todo $y, z \in L$.

 $Irr(L) = \{i \in L : i \text{ es irredicible}\}$

TEOREMA DE REPRESENTACIÓN DE BIRKHOFF

 $\langle L, \bigotimes, \bigotimes, 0, 1 \rangle$ un reticulado acotado distributivo finito, P = Irr(L). Entonces la función

 $F: L \longrightarrow \mathcal{D}(P)$

$$x \longrightarrow \{y \in P : y \le x\}$$

es un isomorfismo entre L y $\mathcal{D}(P)$.

LEMA 1

Sea L un reteticulado distributivo finito. Entonces para todo $x \in L$ se tiene:

 $(1) x = \sup\{i \in Irr(L) : i \le x\},\$

(2) si $D \subseteq Irr(L)$ es decreciente, y $x = \sup D$, entonces $D = \{i \in Irr(L) : i \le x\}$.

1

⇒ Para probar el LEMA 1 necesitamos:

LEMA A

Sea L un reticulado (no nec. distributivo!!!) finito, y sean $x, y \in L$ tales que $x \nleq y$. Entonces existe $i \in Irr(L)$ tal que $i \leq x$ e $i \nleq y$.

- \implies CASO ALGEBRAS DE BOOLE: Irr(B) = At(B)
- ⇒ NOTAR: El Teorema dá un "embbeding" aunque no sea distributivo

COROLARIO

L es distributivo sii $|L| = |\mathcal{D}(Irr(L))|$