CLASE 16/08/2013

RELACIÓN DE ORDEN = reflexiva + antisimétrica + transitiva

EJEMPLOS: relación "incluido" (\subseteq) sobre $\mathcal{P}(X)$

relación "divide" (|) sobre ℕ

relación "menor o igual" (\leq) sobre $\mathbb R$

CONJUNTOS PARCIALMENTE ORDENADOS

DEFINICIÓN: Es un par (P, \leq) , donde P es un conj. $y \leq$ es una relación de orden sobre P.

PRECAUCIÓN: \leq denota ahora una relación de orden sobre un conjunto abstracto, no sobre $\mathbb R$

Términos equivalentes: poset, cpo. La notación x < y significa $x \le y$ y $x \ne y$.

Orden total: (P, \leq) tal que satisface la ley de dicotomía: $\forall x, y \in P \quad x \leq y \quad \text{o} \quad y \leq x$

Diagramas de Hasse (Helmut Hasse 1898-1979)

DEFINICIÓN: Cubrimiento

y **cubre a** $x ext{ si } x \leq y ext{ y no existe } z \neq x, y ext{ tal que } x \leq z \leq y$

Diagrama de Hasse = gráfico de la relación cubrimiento, utilizando arco ascendente

- $\Longrightarrow \mathsf{EJEMPLO} \ 1 \ (\{a,b,c,d\}, \Delta \cup \{(a,b),(a,c),(a,d),(c,d)\})$
- \implies EJEMPLOS ($\{1,2,3,4,5,6\}$,|), ($\{1,2,3,4,5,6\}$, \leq), ($\mathcal{P}(\{a,b,c\})$, \subseteq)
- \implies La idea de elemento MAXIMAL: en el ej. 1, el elemento d es maximal aunque no es un elemento máximo, ya que d no es mayor que a ni que b

DEFINICIÓN: (P, \leq) **poset,** $x \in P$

x es **Máximo** si $y \le x$ para todo $y \in P$ (notación para el máximo: 1)

x es **Mínimo** si $x \le y$ para todo $y \in P$ (notación para el mínimo: 0)

x es **Maximal** si no existe $y \in P$ tal que x < y

x es **Minimal** si no existe $y \in P$ tal que y < x

DEFINICIÓN: sea (P, \leq) poset, $x \in P$, $y \in S \subseteq P$, x es cota superior de S si $y \leq x$ para todo $y \in S$ x es cota inferior de S si $x \leq y$ para todo $y \in S$ x es supremos de S si x es la cota superior más chica x es ínfimo de S si x es la cota inferior más grande

$$\Longrightarrow$$
 EJEMPLO 2 ($\{a,b,c,d\},\Delta \cup \{(a,c),(a,d),(b,c),(b,d)\}$)

El conjunto $\{a,b\}$ tiene dos cotas superiores $(c \ y \ d)$ pero no tiene supremo

EJEMPLO $(\mathcal{P}(X),\subseteq)$ es un poset: $\sup\{A,B\} = A \cup B$, $\inf\{A,B\} = A \cap B$ PREGUNTA ¿Cuándo existen y qué son $\sup(\emptyset)$, $\inf(\emptyset)$?

 \implies ISOMORFISMO DE POSETS ¿En qué se diferencian <u>como estructuras de orden</u> los posets $\mathcal{P} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}, P = \{1,2,3,6\}$?

DEFINICIÓN: ISO DE POSET (P, \leq) , (Q, \leq') **posets, y** $f: P \to Q$ **una función.** Diremos que f es un *isomorfismo* si f es biyectiva y para todo $x, y \in P$, $x \leq y$ si y sólo si $f(x) \leq' f(y)$.

LEMA: (P, \leq) , (Q, \leq') posets, y $f: P \rightarrow Q$ un iso, $S \subseteq P$:

- (a) $\sup(S)$ existe sii $\sup(f(S))$ existe, y en tal caso $\sup(f(S)) = f(\sup(S))$
- (b) $\inf(S)$ existe sii $\inf(f(S))$ existe, y en tal caso $\inf(f(S)) = f(\inf(S))$
- (c) P tiene 1_P sii Q tiene 1_Q , y en tal caso $f(1_P) = 1_Q$ (lo mismo para 0)
- (d) p es maximal en P sii f(p) es maximal en Q
- ⇒ Problema 1. Necesidad de pedir ⇔ en la definición de iso:

Se puede definir f biyectiva de $\mathbf{2} \times \mathbf{2}$ en $\mathbf{4}$ tal que satisface el \Rightarrow

 \implies Pregunta: ¿Si existe $sup\{a,b\}$ para todo a,b, existe sup(S) para calquier S?