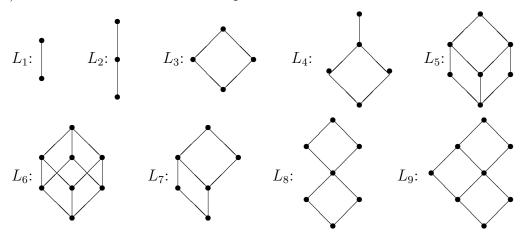
Introducción a la Lógica y la Computación - Estructuras de orden 04/09/2015, Práctico 8: Teorema de Birkhoff para reticulados distributivos.

Objetivos. Comprender la noción de elementos irreducibles identificando en varios reticulados aquellos elementos que lo son. Entender la noción de conjunto decreciente; en particular, para P un poset, poder construir el poset de decrecientes de P. Utilizar el teorema de representación para mostrar que un reticulado es o no un reticulado distributivo.

- 1. Considere los siguientes reticulados.
 - a) Calcule el conjunto de elementos irreducibles.
 - b) Dibuje en cada caso el diagrama de Hasse de $\mathcal{D}(Irr(L))$.
 - c) Utilice el Teorema de Birkhoff para determinar si es distributivo o no.



- 2. Dé todos los reticulados distributivos con exactamente 3 elementos irreducibles.
- 3. Sea n producto de primos distintos p_1, p_2, \ldots, p_k , ¿cuáles son los elementos irreducibles de D_n ?
- 4. a) Describa de la forma más clara posible los elementos irreducibles de D_n .
 - b) Determine $Irr(D_{300})$. Escriba a D_{300} como producto de cadenas.
- 5. Explique por qué no existe X tal que D_{630} sea isomorfo a $\mathcal{P}(X)$
- 6. ¿Es 2×3 subreticulado de $\mathcal{P}(\{a,b,c\})$?
- 7. ¿Es D_{12} subreticulado de $\mathcal{P}(\{a,b,c\})$?
- 8. ¿Es N_5 subreticulado de D_{630} ?
- 9. Dé explícitamente isos entre:

 - (a) D_{12} y $\mathbf{2} \times \mathbf{3}$ (b) D_{175} y $\mathbf{2} \times \mathbf{3}$ (c) D_{99} y $\mathbf{2} \times \mathbf{3}$ (d) D_{875} y $\mathbf{2} \times \mathbf{4}$ (e) D_{297} y $\mathbf{2} \times \mathbf{4}$

- 10. Explique por qué no existe n tal que D_{630} sea isomorfo a $\mathbf{2}^n$
- 11. Determine cuándo D_n es isomorfo a algún $\mathcal{P}(X)$. Dé explícitamente el isomorfismo.
- 12. Dé explícitamente el isomorfismo entre 2×3 y $\mathcal{D}(P)$, para algún poset P.