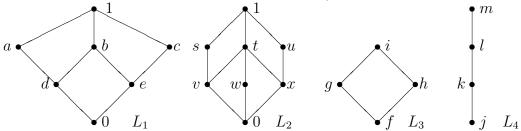
Introducción a la Lógica y la Computación - Estructuras de orden 31/08/2016, Práctico 4: Reticulados.

Objetivo. Este práctico (cortito) se propone explorar los reticulados como estructura algebraica y su relación con posets reticulados. También retomamos reflexiones sobre maximales y máximos en órdenes totales (¿cuál es la noción dual de maximal? ¿y la de mínimo?); además vemos que en un poset reticulado *completo* alcanza con que existan los supremos para que existan los ínfimos (¿valdrá el dual?).

1. Considere el reticulado L_2 . Encuentre $v \vee x$, $s \vee v$ y $u \vee v$.



- 2. En el reticulado L_1 , muestre todas las formas posibles de escribir los elementos 1, b y c como supremo de dos elementos. Por ejemplo, una manera sería $1 = d \lor c$.
- 3. Defina una función f biyectiva del reticulado L_3 en el reticulado L_4 que preserve el orden, es decir, tal que $x \leq y \Longrightarrow f(x) \leq' f(y)$. Compruebe que el recíproco no se cumple y que f no preserva supremo ni ínfimo.
- 4. Determine la validez de las siguientes afirmaciones para un orden total (P, \leq) :
 - a) P tiene a lo sumo un elemento maximal.
 - b) Si P tiene elemento maximal x, entonces x es el máximo.
- 5. Decida, y fundamente, cuáles de los reticulados L_1, L_2, L_3 y L_4 son complementados.
- 6. Supongamos que un poset tiene la siguiente propiedad: para todo subconjunto S de P se tiene que $\sup(S)$ existe (en particular existe $\sup(P)$ y $\sup(\emptyset)$). Demostrar que $\inf(S)$ existe para cualquier S.
- 7. ¿Todo reticulado finito tiene máximo y mínimo?