L

Parte II: Lógica Proposicional

12 de octubre de 2016

Deducción natural

- La clase pasada introdujimos las reglas de inferencia que nos aseguran que si partimos de premisas válidas, entonces las conclusiones serán válidas.
- Luego mostramos ejemplos de cómo usarlas para construir derivaciones.
- Si bien no lo explicitamos, mencionamos que las pruebas podían ser vistas cómo árboles.
- A las hojas (que no estaban entre corchetes) les llamábamos hipótesis; y a la raiz, conclusión.

3

• Definamos ahora mismo una función $hip \colon \mathcal{D} \to \mathcal{P}(Prop)$, que dada una derivación dice cuáles son las hipótesis no canceladas de la derivación:

$$hip(P) = \{P\} \tag{Prop}$$

$$hip\left(D_1 \begin{array}{cc} \vdots & D_2 & \vdots \\ P & Q & A \end{array}\right) = hip(D_1) \cup hip(D_2) \tag{$\wedge I$}$$

$$hip\left(D \xrightarrow{\frac{\vdots}{P \wedge Q}} \triangle E\right) = hip(D) \tag{$\wedge E$}$$

$$hip\left(D \xrightarrow{\frac{\vdots}{D \land Q} \land E}\right) = hip(D) \tag{$\wedge E$}$$

Ejemplo de función recursiva

$$hip\left(D : \atop Q \atop P \to Q \right) = hip(D) \setminus \{P\} \qquad (\to I)$$

$$hip\left(D_1 : \atop P \atop Q \atop P \to Q \atop Q \right) = hip(D_1) \cup hip(D_2) \qquad (\to E)$$

 $hip\left(D \stackrel{\vdots}{\underset{D}{\perp}} \bot E\right) = hip(D)$

$$hip\left(D \stackrel{\vdots}{\underset{P}{\perp}} \bot E\right) = hip(D) \tag{2}$$

$$[\neg P]$$

$$hip\left(D \stackrel{\vdots}{\underset{P}{\perp}} RAA\right) = hip(D) \setminus \{\neg P\} \tag{R}$$

$$Q$$

$$hip\left(D \stackrel{\vdots}{\underset{P}{\perp}} \perp I \right)$$
 $[\neg P]$

 $(\perp E)$ (RAA)

 $(\rightarrow I)$

$$P \left(\begin{array}{c} P \longrightarrow Q \\ \hline Q \end{array} \right) \rightarrow E'$$

$$hip \left(D \stackrel{\vdots}{\underset{P}{\longrightarrow}} \bot E' \right)$$

Derivaciones

- La clase pasada dijimos que Q se derivaba de P_1, \ldots, P_n si existía una derivación con conclusión Q y sus hipótesis no canceladas estaban entre P_1, \ldots, P_n .
- Ahora que tenemos definidas formalmente las derivaciones y las nociones de hipótesis no canceladas (la función hip) y la conclusión (concl), podemos decirlo mejor.
- Para $\Gamma \subseteq Prop$ y $Q \in Prop$, decimos que Q se deduce de Γ si existe una derivación D tal que $hip(D) \subseteq \Gamma$ y concl(D) = Q. La notación que utilizamos es la siguiente $\Gamma \vdash Q$.
- Si Q se deduce del conjunto vacío, ∅ ⊢ Q, entonces decimos que Q es un teorema. Si Q es un teorema nos ahorramos escribir el conjunto vacío: ⊢ Q.

- Si tenemos $\{P\} \vdash Q$, podemos construir una derivación $\vdash P \rightarrow Q$?
- Si tenemos $\{P \land Q\} \vdash R$, podemos construir una derivación $\vdash P \to (Q \to R)$?
- Este tipo de manipulaciones de derivaciones las podemos expresar como meta-teoremas: Si $\{P \land Q\} \vdash R$, entonces $\vdash P \to (Q \to R)$.

- Puesto que el conjunto {∧, →, ⊥} era funcionalmente completo podíamos contentarnos con esos conectivos.
- En esta clase daremos reglas de inferencia para: la doble implicación (↔), la disyunción (∨) y la negación (¬).

La doble implicación, introducción

• Si pensamos que la doble implicación $P \leftrightarrow Q$ se codifica como $(P \to Q) \land (Q \to P)$, entonces no es sorprendente que la regla de introducción sea una combinación de las introducciones de \to y de \land :

$$[P] \qquad [Q] \\ \vdots \qquad \vdots \\ \frac{Q \qquad P}{P \leftrightarrow Q} \leftrightarrow I$$

- Recordemos que las hipótesis que podemos descargar son P en el sub-árbol de la izquierda y Q en el sub-árbol de la derecha.
- NO podemos descargar P en el sub-árbol de la derecha.
- NO podemos descargar Q en el sub-árbol de la izquierda.

- ¿Cuántas reglas habrá para eliminar la doble implicación?
 - Puesto que lo codificamos como una conjunción, tendremos dos reglas de eliminación:

$$\begin{array}{ccc} P & P \leftrightarrow Q \\ \hline Q & \end{array} \longleftrightarrow E & \begin{array}{cccc} Q & P \leftrightarrow Q \\ \hline P & \end{array} \longleftrightarrow E$$

9

La disyunción, introducción

- La disyunción es el dual de la conjunción: mientras que para introducir una conjunción necesitamos pruebas de ambos términos, para la disyunción nos alcanza con uno.
- Por ello tenemos dos reglas de introducción:

$$\frac{P}{P \vee Q} \vee I \qquad \qquad \frac{Q}{P \vee Q} \vee I$$

¿Cuántas reglas de eliminación de la disyunción habrá?

La disyunción, eliminación

- Teniendo en cuenta la dualidad entre ∧ y ∨ es esperable tener una única regla de eliminación de la disyunción.
- Pero, cómo podemos usar una disyunción P ∨ Q?
- Si suponiendo P podemos concluir R y si suponiendo Q también podemos concluir R, entonces podemos concluir R a partir de cualquiera de las dos:

$$\begin{array}{ccc}
 & [P] & [Q] \\
\vdots & \vdots \\
 & R & R
\end{array}$$

La disyunción, eliminación

- La regla de eliminación de la disyunción muestra cómo probar por casos R:
- por un lado podemos suponer P para probar R y por lo tanto en el segundo sub-árbol podemos descargar P;
- por otro lado podemos suponer Q para probar R, consecuentemente descargamos Q del tercer sub-árbol.
- PERO no podemos descargar NI P NI Q en el primer sub-árbol, no al menos al usar esta regla!

La negación

- Las reglas de la negación son muy fáciles de comprender si pensamos en cómo la habíamos definido en términos de → y ⊥:
- Introducción:

$$[P]$$

$$\vdots$$

$$\neg P \neg I$$

Eliminación:

$$\frac{P}{\perp}$$
 $\neg P$

Ejemplos de derivaciones con los nuevos conectivos

- $\{P \lor Q, \neg P\} \vdash Q$
- $\bullet \vdash P \lor \neg P$

Pispeando el futuro

Teorema (Corrección)

Si $\Gamma \vdash Q$, entonces $\Gamma \models Q$.

- Recordemos que $\Gamma \vdash Q$ significa que existe una derivación D tal que $hip(D) \subseteq \Gamma$ y concl(D) = Q.
- El enunciado preciso que probaremos es: Para toda derivación D, si $hip(D) \subseteq \Gamma$ y concl(D) = Q, entonces $\Gamma \models Q$.
- Para la prueba utilizaremos inducción en derivaciones.

Pispeando el futuro: completitud

Teorema (Completitud)

Si $\Gamma \models Q$, entonces $\Gamma \vdash Q$.

- Como $\Gamma \models Q$, entonces para toda f de Γ , $[\![Q]\!]_f = 1$;
- por lo tanto no existe f de $\Gamma \cup \{\neg Q\}$.
- Si no existe f de Δ , entonces $\Delta \vdash \bot$.
- Con el punto anterior y RAA podemos concluir $\Gamma \vdash Q$.