l

Parte II: Lógica Proposicional

21 de octubre de 2016

Semántica

- Las asignaciones son funciones en $\mathcal{V} \to \{0,1\}$.
- Dada una asignación f, definimos la semántica $\llbracket \rrbracket_f \colon Prop \to \{0,1\}$.
- Una proposición P es tautología si para toda asignación f, $[\![P]\!]_f=1$.
- Una asignación f es de $\Gamma \subseteq \mathit{Prop}$, si para toda $Q \in \Gamma$, $[\![Q]\!]_f = 1$.
- Decimos que P es consecuencia lógica de Γ , $\Gamma \models P$, si para toda f de Γ , se da que $\llbracket P \rrbracket_f = 1$.

- Necesidad de formalizar los esquemas de razonamiento válido.
- Reglas de inferencia para construir derivaciones a partir de hipótesis.
- Definición por inducción del conjunto $\mathcal D$ de derivaciones.
- Decimos que Q se deduce de Γ , $\Gamma \vdash Q$, si existe una derivación D tal que $hip(D) \subseteq \Gamma$ y concl(D) = Q.
- Las reglas sólo nos permiten inferir conclusiones válidas a partir de premisas válidas: $\Gamma \vdash Q$ implica $\Gamma \models Q$.

- Queremos probar $\Gamma \models P$ implica $\Gamma \vdash P$.
- Si $\Gamma \models P$, entonces no existe ninguna asignación de $\Gamma \cup \{\neg P\}$.
- Si no existe f de $\Gamma \cup \{\neg P\}$, entonces $\Gamma \cup \{\neg P\} \vdash \bot$. ¡Esto es lo difícil!
- Por lo tanto, $\Gamma \vdash P$ por RAA.

4

- Un conjunto $\Gamma \subseteq Prop$ es **in**consistente si $\Gamma \vdash \bot$.
- ¿Ejemplos de inconsistentes?
- Un conjunto $\Gamma \subseteq Prop$ es consistente si $\Gamma \not\vdash \bot$.
- La definición de inconsistente es equivalente a estas otras.
 Sea Γ ⊆ Prop, Γ es inconsistente si y sólo si
 Existe P ∈ Prop tal que Γ ⊢ P y Γ ⊢ ¬P.
 Para toda P ∈ Prop, Γ ⊢ P.

Consecuencias de inconsistencia

• Si $\Gamma \cup \{\neg P\} \vdash \bot$, entonces $\Gamma \vdash P$. Sea D tal que $hip(D) \subseteq \Gamma \cup \{\neg P\}$ y $concl(D) = \bot$, entonces construimos la siguiente derivación: $[\neg P]$ $D \quad \vdots \\ \quad \bot \text{hacer el práctico}$

• Si $\Gamma \cup \{P\} \vdash \bot$, entonces $\Gamma \vdash \neg P$.

Criterios de consistencia

- ¿Cómo podemos saber si un conjunto Γ es consistente?
- Es decir tenemos que ver $\Gamma \not\vdash \bot$.
- Si existe una asignación f de Γ , entonces Γ es consistente. Sea f una asignación de Γ y supongamos $\Gamma \vdash \bot$ (para llegar a una contradicción). Entonces $[\![\bot]\!]_f = 1$: la contradicción que buscábamos. Por lo tanto $\Gamma \not\vdash \bot$.
- $\{p_0, \neg p_1, p_2, \neg p_3, \dots, p_{2*k}, \neg p_{2*k+1}, \dots\}$ es consistente.
- Para ver que un conjunto Γ es inconsistente, debemos mostrar $\Gamma \vdash \bot !$

Consistentes maximales

- ¿Será cierta la vuelta del criterio de consistencia?
- Sea Γ es consistente, ¿existe una asignación de Γ ?
- ¿Por qué es importante esta pregunta?
- Supongamos que $\Gamma \cup \{\neg P\}$ no tiene una asignación. Entonces $\Gamma \cup \{\neg P\}$ es inconsistente: $\Gamma \cup \{\neg P\} \vdash \bot$ Por lo tanto, $\Gamma \vdash P$.
- Un conjunto $\Gamma \subseteq Prop$ es consistente maximal si para todo Δ consistente, $\Gamma \subseteq \Delta$ implica $\Delta = \Gamma$.
- Prácticamente, Δ es consistente maximal si no existe $Q \not\in \Delta$, tal que $\Delta \cup \{Q\}$ siga siendo consistente.

• Los consistentes maximales son cerrados por derivación: si Δ es consistente maximal, entonces $\Delta \vdash P$ implica $P \in \Delta$.

Supongamos $P \not\in \Delta$, entonces $\Delta \cup \{P\} \vdash \bot$, de otro modo Δ no sería maximal.

Por el ejercicio, sabemos $\Delta \vdash \neg P$; entonces $\Delta \vdash \bot$:

$$\begin{array}{ccc} \vdots & \vdots \\ \underline{P} & \neg P \\ \hline & \bot \end{array} \to E$$

Consistentes maximales

- Sea Δ un conjunto maximal, entonces Δ realiza los conectivos.
 - 1 Para toda $P \in Prop$, $P \notin \Delta$ si v sólo si $\neg P \in \Delta$. Si $P \notin \Delta$, entonces $\Delta \vdash \neg P$, por lema anterior.
 - 2 $P \in \Delta$ y $Q \in \Delta$ si y sólo si $P \land Q \in \Delta$.
 - **3** Si $P \in \Delta$ implica $Q \in \Delta$, entonces $P \to Q \in \Delta$. Supongamos $P \notin \Delta$, entonces $\neg P \in \Delta$. $\frac{\frac{\bot}{Q}\bot E}{P\to Q}\to I_1$ Supongamos $P\in\Delta$, entonces $Q\in\Delta$, por lo tanto $\frac{Q}{P\to O}\to I$

- **4** Si $P \to Q \in \Delta$, entonces $P \in \Delta$ implica $Q \in \Delta$. Es muy simple $P \to Q P \to E$
- En los tres casos concluimos que la proposición está en Δ , porque Δ es cerrado por derivaciones.

Consistentes maximales

- Supongamos que Δ es consistente maximal.
- Si sabemos que ciertas proposiciones están en Δ , entonces podemos saber que otras también están.
- Ejemplo: Si $P \in \Delta$, entonces $Q \to P \in \Delta$, para todo Q.
- Si Γ es consistente, entonces pueden existir varios Δ_i y consistentes maximales tales que $\Gamma \subseteq \Delta_i$.
- Ejemplo: ∅ es consistente (¿por qué?) y hay muuchos maximales que lo contienen.

Existencia de valuación

- Sea Δ consistente maximal, entonces para toda $P \in Prop$ o bien $P \in \Delta$ o bien $\neg P \in \Delta$.
- Si Δ es consistente maximal, entonces existe una asignación de Δ . Definamos $f \colon \mathcal{V} \to \{0,1\}$ de la siguiente manera:

$$f p_i = 1$$
 $\text{si } p_i \in \Delta$ $f p_i = 0$ $\text{si } p_i \not\in \Delta$

Probamos $[\![Q]\!]_f=1$ si y sólo si $Q\in \Delta$, usando inducción en Q. (At) Por definición de f y de $[\![-]\!]_f$.

Existencia de valuación

$$\begin{split} (P \to Q) \ \, & \text{Asumimos} \ \llbracket P \rrbracket_f = 1 \text{ sii } P \in \Delta \text{ y} \ \llbracket Q \rrbracket_f = 1 \text{ sii } Q \in \Delta. \\ & \text{Si} \ \llbracket P \to Q \rrbracket_f = 1, \text{ entonces o bien } \llbracket Q \rrbracket_f = 1, \text{ entonces} \\ & Q \in \Delta \text{ y} \ P \to Q \in \Delta; \\ & \text{o bien} \ \llbracket P \rrbracket_f = 0, \text{ entonces } P \not \in \Delta; \text{ por lo tanto } \neg P \in \Delta \text{ y} \\ & \text{concluimos } P \to Q \in \Delta. \\ & \text{Si } P \to Q \in \Delta, \text{ entonces } P \in \Delta \text{ implica } Q \in \Delta. \\ & \text{Si } P \in \Delta, \text{ entonces } Q \in \Delta \text{ y por h.i. } \llbracket P \to Q \rrbracket_f = 1. \\ & \text{Si } P \not \in \Delta, \text{ entonces por h.i. } \llbracket P \rrbracket_f = 0 \text{ y por lo tanto} \\ & \llbracket P \to Q \rrbracket_f = 1. \end{split}$$

Existencia de valuación

 $\begin{array}{l} (P \wedge Q) \ \, \text{Asumimos} \,\, \llbracket P \rrbracket_{\,f} = 1 \,\, \text{sii} \,\, P \in \Delta \,\, \text{y} \,\, \llbracket Q \rrbracket_{\,f} = 1 \,\, \text{sii} \,\, Q \in \Delta. \\ \, \text{Si} \,\, \llbracket P \wedge Q \rrbracket_{\,f} = 1, \,\, \text{entonces tanto} \,\, \llbracket P \rrbracket_{\,f} = 1 \,\, \text{como} \,\, \llbracket Q \rrbracket_{\,f} = 1, \\ \, \text{por h.i. en} \,\, P \,\, \text{y en} \,\, Q, \,\, \text{tenemos} \,\, P \in \Delta \,\, \text{y} \,\, Q \in \Delta, \,\, \text{por lo tanto} \\ \, P \wedge Q \in \Delta. \end{array}$

Si $P \wedge Q \in \Delta$, entonces $P \in \Delta$ y $Q \in \Delta$. Por h.i. en P y en Q, $\llbracket P \rrbracket_f = \llbracket Q \rrbracket_f = 1$. Por lo tanto, $\llbracket P \wedge Q \rrbracket_f = 1$.

Extension a maximales

• Para ver que todo conjunto consistente Γ tiene una asignación, lo extendemos a uno maximal Γ^* .

Como las proposiciones son numerables, podemos pensarlas dadas por una lista infinita: P_0,P_1,P_2,\ldots

$$\begin{split} &\Gamma_0 = \Gamma \\ &\Gamma_{n+1} = \Gamma_n \\ &\Gamma_{n+1} = \Gamma_n \cup \{P_n\} \vdash \bot \\ &\Gamma^* = \bigcup_{n \in \mathbb{N}} \Gamma_n \end{split}$$
 si $\Gamma_n \cup \{P_n\} \vdash \bot$

• Podemos probar que Γ^* es consistente maximal.

Γ^* es consistente maximal

- Γ_0 es consistente por hipótesis.
- Si Γ_n es consistente, entonces Γ_{n+1} es consistente.
- Si Γ^* es inconsistente, entonces existe k tal que Γ_k es inconsistente. Supongamos $\Gamma^* \vdash \bot$; la derivación D que muestra eso tiene necesariamente finitas hipótesis no canceladas. Si $hip(D) \subseteq \Gamma^*$, entonces $hip(D) \subseteq \Gamma_k$, para algún k. Pero esto es absurdo, pues mostramos que Γ_k es consistente.
- Para ver que es maximal, supongamos que $\Gamma^* \cup \{Q\}$ es consistente. Como Q aparecía en nuestra lista, digamos en la posición m, entonces $\Gamma_{m+1} = \Gamma_m \cup \{Q\}$ es consistente; por lo tanto $Q \in \Gamma^*$.

Recapitulando

- Si f es de Δ y $\Gamma \subseteq \Delta$, entonces f es de Γ .
- Como corolario de que todo maximal tiene una asignación, y de
- que todo consistente se extiende a uno maximal,
- obtenemos que todo conjunto consistente tiene una asignación.
- La contrarecíproca de lo anterior nos dice, si no existe asignación de Γ , entonces Γ es inconsistente.

Teorema de completitud

Teorema

Si $\Gamma \models P$, entonces $\Gamma \vdash P$.

Supongamos $\Gamma \models P$. Entonces no existe f de $\Gamma \cup \{\neg P\}$. Entonces, por criterio de consistencia, $\Gamma \cup \{\neg P\}$ es inconsistente. Por lo tanto $\Gamma \vdash P$.