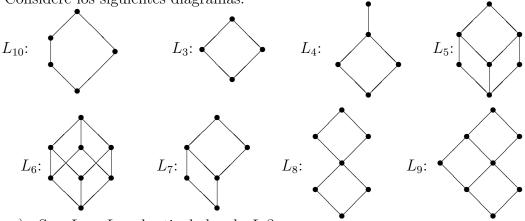
Introducción a la Lógica y la Computación - Estructuras de orden 7/09/2016, Práctico 6: Álgebras de Boole.

Objetivos. Entender el concepto de subreticulado. Identificar cuando un reticulado es un álgebra de Boole. Estudiar propiedades de las álgebras de Boole. Comprender la construcción de productos de posets y verificar qué propiedades preserva esa construcción.

1. Considere los siguientes diagramas.



- a) ¿Son L_7 y L_8 subreticulados de L_9 ?
- b) ¿Cuáles de estos reticulados tienen a L_4 como subreticulado? ¿Y a L_5 ?
- c) ¿De cuántas maneras distintas es L_3 subreticulado de L_8 ?
- d) ¿Es L_{10} subreticulado de L_6 ? ¿Es M_3 subreticulado de L_8 ?
- 2. ¿Cuáles de los 8 reticulados anteriores son álgebras de Boole?
- 3. Sea B un álgebra de Boole y \leq el orden asociado a B. Demuestre que
 - a) $(x^c)^c = x$;
 - b) $x \le y$ si y sólo si $y^c \le x^c$;
 - c) $y \otimes z = 0$ si y sólo si $y \leq z^c$; (¿cómo sería una propiedad similar con $y \otimes z$?)
 - d) si $x \le y$ e $y \otimes z = 0$ entonces $z \le x^c$ (vea lo que hizo antes).
- 4. Sean (L, \leq_L) y (M, \leq_M) posets. Considere el conjunto $L \times M$ con \leq definida así:

$$(x_1, y_1) \leq (x_2, y_2) \sin x_1 \leq_L x_2 \ y \ y_1 \leq_M y_2.$$

a) Sea \mathbf{n} la cadena de n elementos. Dé los diagramas de Hasse de :

2)
$$\mathcal{P}(\{a,b\}) \times \mathbf{2}$$
.

3)
$$2 \times (2 \times 2)$$
.

b) Pruebe que si L y M son reticulados entonces $L \times M$ también lo es. Dé explícitamente las operaciones

$$(x_1, y_1) \otimes (x_2, y_2)$$
 $(x_1, y_1) \otimes (x_2, y_2)$

- c) Defina el producto $B_0 \times B_1$ de las álgebras de Boole B_0 y B_1 y pruebe que es un álgebra de Boole.
- d*) Pruebe que si L y M son distributivos, entonces $L \times M$ también lo es.