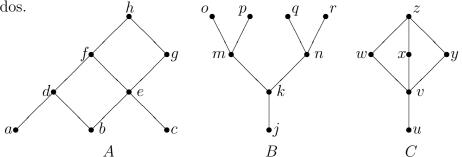
Introducción a la Lógica y la Computación - Estructuras de orden 18/08/2017, Práctico 2: Posets.

Objetivo. Comprender la relación de cobertura en un orden parcial (poset) y su representación a través de diagramas de Hasse. Entender las nociones de máximo y mínimo de subconjuntos de un poset, distinguiéndolas de las de maximal y minimal; utilizar las nociones de máximo y mínimo para analizar supremos (sup) e ínfimos (ínf).

Nota: Se sugiere resolver los ejercicios marcados con * al terminar el resto.

1. La siguiente figura muestra los diagramas de Hasse de tres conjuntos parcialmente ordena-



- a) Para el diagrama C, liste todos los pares de la relación \leq .
- b) ¿Cuáles son los elementos maximales y minimales de estos conjuntos?
- c) ¿Cuáles de estos conjuntos tienen mínimo, cuáles máximo?
- d) En el diagrama A, ¿Qué elementos cubren a e?
- e) Encuentre cada uno de los siguientes, si es que existe. En cada caso determine previamente el conjunto de cotas correspondiente.

$$\sup\{d,c\},\quad \sup\{w,y,v\},\quad \sup\{p,m\},\quad \inf\{a,g\},\quad \sup\{m,n\}\quad \inf\{g,a,f\}$$

- 2. Determine la validez de las siguientes afirmaciones para un poset (P, <):
 - a) Si P tiene elemento máximo x, entonces x es el único elemento maximal.
 - b) Si P es finito y tiene un único elemento maximal x, entonces x es el máximo.
 - c*) Si P tiene un único elemento maximal x, entonces x es el máximo.
- 3. Sea $P = \{a, b, c, d, e\}$. Construya diagramas de Hasse que representen posets formados por estos 5 elementos, y que satisfagan:
 - a) El supremo de $\{a,b\}$ es c, y el ínfimo es d. Además el ínfimo de P es e.
 - b) El supremo de $\{a, b\}$, el supremo de $\{a, c\}$ y el supremo de $\{b, c\}$ coinciden, y son todos el elemento d.
 - c) P no tiene supremo ni ínfimo.
 - d) El supremo de $\{a,b\}$ no existe puesto que $\{a,b\}$ no tienen cotas superiores.
 - e) Aunque $\{a, b\}$ tiene cotas superiores, el supremo de $\{a, b\}$ no existe.
- 4. Considere el conjunto parcialmente ordenado $(D_{90}, |)$ de los divisores de 90:
 - a) Dibuje el diagrama de Hasse de la relación "divide a".
 - b) Calcule $\sup\{6, 10\}$, $\inf\{6, 10\}$, $\sup\{30, 9\}$ y $\inf\{9, 30\}$.
- 5. Determine cuáles de los siguientes mapeos de P a Q son isomorfismos. En caso de no serlo determine qué es lo que falla.
 - a) $P = Q = \mathbb{Z}$ (con el orden usual), f(x) = x + 1.
 - b) $P = Q = \mathbb{Z}$ (con el orden usual), f(x) = 2x.
 - c) $P = Q = \mathbb{Z}$ (con el orden usual), f(x) = -x.
 - d*) $P = Q = \mathcal{P}(\{a,b,c\})$ (con la inclusión). La función f está definida de la siguiente manera. Si a,b están ambos en A, o no están ninguno de los dos en A, entonces f(A) = A. En otro caso f quita de A al que está y pone al que no está. Por ejemplo, $f(\{a\}) = \{b\}$ y $f(\{a,c\}) = \{b,c\}$.
 - $e*) P = Q = \mathcal{P}(\{a, b, c\})$ (con la inclusión), y $f(A) = A^c$.