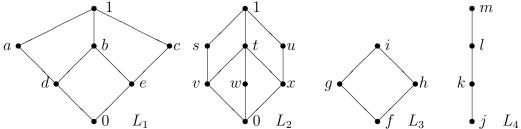
Introducción a la Lógica y la Computación - Estructuras de orden 25/08/2017, Práctico 4: Reticulados.

Objetivo. Este práctico (cortito) se propone explorar los reticulados como estructura algebraica y su relación con posets reticulados. También retomamos reflexiones sobre maximales y máximos en órdenes totales (¿cuál es la noción dual de maximal? ¿y la de mínimo?); además vemos que en un poset reticulado completo alcanza con que existan los supremos para que existan los ínfimos (¿valdrá el dual?). Hay dos ejercicios que se pueden resolver utilizando resultados del práctico pasado (y recordando algunas cosillas más).

1. Considere el reticulado L_2 . Encuentre $v \vee x$, $s \vee v$ y $u \vee v$.



- 2. En el reticulado L_1 , muestre todas las formas posibles de escribir los elementos 1, b y c como supremo de dos elementos. Por ejemplo, una manera sería $1 = d \lor c$.
- 3. Defina una función f biyectiva del reticulado L_3 en el reticulado L_4 que preserve el orden, es decir, tal que $x \leq y \Longrightarrow f(x) \leq' f(y)$. Compruebe que el recíproco no se cumple y que f no preserva supremo ni ínfimo.
- 4. Determine la validez de las siguientes afirmaciones para un orden total (P, \leq) :
 - a) P tiene a lo sumo un elemento maximal.
 - b) Si P tiene elemento maximal x, entonces x es el máximo.
- 5. Decida, y fundamente, cuáles de los reticulados L_1, L_2, L_3 y L_4 son complementados.
- 6. ¿Todo reticulado finito tiene máximo y mínimo?
- 7. Supongamos que un poset tiene la siguiente propiedad: para todo subconjunto S de P se tiene que $\sup(S)$ existe (en particular existe $\sup(P)$ y $\sup(\emptyset)$). Demostrar que $\inf(S)$ existe para cualquier S.