L

Parte II: Lógica Proposicional

6 de octubre de 2017

- Puesto que el conjunto {∧, →, ⊥} era funcionalmente completo podíamos contentarnos con esos conectivos.
- En esta clase daremos reglas de inferencia para: la negación (¬), la doble implicación (↔) y la disyunción (∨).

La negación

- Las reglas de la negación son muy fáciles de comprender si pensamos en cómo la habíamos definido en términos de → y ⊥:
- Introducción:

$$[P]$$

$$\vdots$$

$$\neg P \neg I$$

Eliminación:

$$\frac{P \qquad \neg P}{\perp} \neg E$$

• Si pensamos que la doble implicación $\phi \leftrightarrow \psi$ se codifica como $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$, entonces no es sorprendente que la regla de introducción sea una combinación de las introducciones de \rightarrow y de \land :

$$\begin{array}{ccc} [\phi] & [\psi] \\ \vdots & \vdots \\ \frac{\psi & \phi}{\phi \leftrightarrow \psi} \leftrightarrow I \end{array}$$

- Recordemos que las hipótesis que podemos descargar son ϕ en el sub-árbol de la izquierda y ψ en el sub-árbol de la derecha.
- NO podemos descargar ϕ en el sub-árbol de la derecha.
- NO podemos descargar ψ en el sub-árbol de la izquierda.

- ¿Cuántas reglas habrá para eliminar la doble implicación?
- Puesto que lo codificamos como una conjunción, tendremos dos reglas de eliminación:

$$\frac{\phi \qquad \phi \leftrightarrow \psi}{\psi} \leftrightarrow E$$

$$\frac{\psi \qquad \phi \leftrightarrow \psi}{\phi} \leftrightarrow E$$

La disyunción, introducción

- La disyunción es el dual de la conjunción: mientras que para introducir una conjunción necesitamos pruebas de ambos términos, para la disyunción nos alcanza con uno.
- Por ello tenemos dos reglas de introducción:

$$\frac{\phi}{\phi \vee \psi} \vee I \qquad \qquad \frac{\psi}{\phi \vee \psi} \vee I$$

• ¿Cuántas reglas de eliminación de la disyunción habrá?

La disyunción, eliminación

- Teniendo en cuenta la dualidad entre ∧ y ∨ es esperable tener una única regla de eliminación de la disyunción.
- Pero, cómo podemos usar una disyunción $\phi \lor \psi$?
- Si suponiendo ϕ podemos concluir χ y si suponiendo ψ también podemos concluir χ , entonces podemos concluir χ a partir de cualquiera de las dos:

$$\begin{array}{ccc} & [\phi] & [\psi] \\ & \vdots & \vdots \\ \frac{\phi \vee \psi}{\chi} & \frac{\chi}{\chi} \vee E \end{array}$$

La disyunción, eliminación

- La regla de eliminación de la disyunción muestra cómo probar por casos χ :
- por un lado podemos suponer ϕ para probar χ y por lo tanto en el segundo sub-árbol podemos descargar ϕ ;
- por otro lado podemos suponer ψ para probar χ , consecuentemente descargamos ψ del tercer sub-árbol.
- PERO no podemos descargar NI ϕ NI ψ en el primer sub-árbol, no al menos al usar esta regla!

Ejemplos de derivaciones con los nuevos conectivos

- $\bullet \ \{P \lor Q, \neg P\} \vdash Q$
- $\bullet \vdash P \lor \neg P$

Derivaciones

- Decimos que ψ se derivaba de ϕ_1, \ldots, ϕ_n si existe una derivación con conclusión ψ y sus hipótesis no canceladas están entre ϕ_1, \ldots, ϕ_n .
- Para $\Gamma \subseteq Prop$ y $\psi \in Prop$, decimos que ψ se deduce de Γ si existe una derivación D tal que las hipótesis están contenidas en Γ y su conclusión es ψ . La notación que utilizamos es la siguiente $\Gamma \vdash \psi$.
- Si ψ se deduce del conjunto vacío, $\emptyset \vdash \psi$, entonces decimos que ψ es un teorema. Si ψ es un teorema nos ahorramos de escribir el conjunto vacío: $\vdash \psi$.

Derivaciones

- Si tenemos $\{\phi\} \vdash \psi$, podemos construir una derivación $\vdash \phi \rightarrow \psi$?
- Si tenemos $\{\phi \land \psi\} \vdash \chi$, podemos construir una derivación $\vdash \phi \to (\psi \to \chi)$?
- Este tipo de manipulaciones de derivaciones las podemos expresar como meta-teoremas: Si $\{\phi \land \psi\} \vdash \chi$, entonces $\vdash \phi \rightarrow (\psi \rightarrow \chi)$.

Definiremos el conjunto de derivaciones, \mathcal{D} , como el menor conjunto que satisface (en varias filminas):

$$(Prop)$$
 Si $\phi \in Prop$, entonces $\phi \in \mathcal{D}$.

$$(\wedge E) \ \ \text{Si} \quad \underset{\phi \ \wedge \ \psi}{\vdots} \ \ \in \mathcal{D} \text{, entonces} \quad D \ \ \underset{\phi \ \wedge \ \psi}{\vdots} \ \ \in \mathcal{D}$$

$$\begin{array}{ccccc} (\to E) \ \ \text{Si} & D_1 & \vdots & \in \mathcal{D} \ \text{y} & D_2 & \vdots & \in \mathcal{D}, \ \text{entonces} \\ \\ D_1 & \vdots & & \vdots & \\ \frac{\phi}{\psi} & \frac{\phi \to \psi}{\psi} \to E \end{array} \in \mathcal{D}$$

$$(\bot E) \ \ \text{Si} \quad D \ \ \overset{\vdots}{ \bot} \ \in \mathcal{D} \text{, entonces} \quad D \ \ \overset{\vdots}{ \bot} \ \underset{\phi}{ \bot} \ \bot E \in \mathcal{D}$$

El conjunto \mathcal{D} y sus consecuencias

- Si quisiéramos justificar que un árbol está en \mathcal{D} , entonces deberíamos mostrar cómo lo vamos construyendo a partir del uso de la regla Prop, utilizando las cláusulas que dimos recién.
- Eso es demasiado engorroso y no lo haremos explícitamente, pero tengamos en cuenta que podríamos hacerlo.
- Pero entonces, para qué introducir \mathcal{D} ? ¿Qué herramientas tenemos ahora a nuestra disposición?

El conjunto \mathcal{D} y sus consecuencias

- El mismo cuentito de siempre: por un lado tenemos un principio de definición de funciones por recursión.
- Por otro lado, podemos usar inducción *en subderivaciones* para probar que cierta propiedad es cierta para toda derivación.
- ¿Para qué podemos usar ese principio de inducción en subderivaciones? Para probar la corrección: es decir fundamentar nuestro eslogan de que las reglas de inferencia preservan la validez (que si lo recuerdan lo denotábamos como)=).

Ejemplo de función (no tan) recursiva

 Definamos ahora mismo una función concl: D → Prop, que dada una derivación dice cuál es la conclusión de esa derivación:

$$concl(\phi) = \phi$$
 (Prop)

$$concl\left(D_1 \begin{array}{ccc} \vdots & D_2 & \vdots \\ \phi & \psi & \gamma \end{array}\right) = \phi \wedge \psi \qquad (\wedge I)$$

$$concl\left(D \begin{array}{c} \vdots \\ \frac{\phi \wedge \psi}{\phi} \wedge E \end{array}\right) = \phi \tag{$\wedge E$}$$

$$concl\left(D \xrightarrow{\vdots}_{\frac{\phi \wedge \psi}{\psi} \wedge E}\right) = \psi \qquad (\wedge E)$$

 $(\rightarrow I)$

Ejemplo de función (no tan) recursiva (cont)

$$concl\left(D \begin{array}{c} \vdots \\ \frac{\psi}{\phi \to \psi} \to I \end{array}\right) = \phi \to \psi \qquad (\to I)$$

$$\frac{-}{\phi \to \psi} \to I \qquad (\to E)$$

$$concl\left(D_1 \begin{array}{c} \vdots \\ \frac{\phi}{\psi} & D_2 \\ \frac{\phi}{\psi} \to \psi \end{array}\right) = \psi \qquad (\to E)$$

 $concl\left(D \stackrel{\vdots}{\underset{-}{\bot}} \bot E\right) = \phi$ $(\perp E)$ $concl\left(D \begin{array}{c} \vdots \\ \frac{\bot}{\phi} RAA \end{array}\right) = \phi$ (RAA)

Ejemplo de función recursiva

 Definamos ahora mismo una función hip: D → P(Prop), que dada una derivación dice cuáles son las hipótesis no canceladas de la derivación:

$$hip(\phi) = \{\phi\}$$
 (Prop)

$$hip\left(D_1 \begin{array}{ccc} \vdots & D_2 & \vdots \\ \frac{\phi}{\phi \wedge \psi} & \wedge I \end{array}\right) = hip(D_1) \cup hip(D_2) \tag{$\wedge I$}$$

$$hip\left(D \begin{array}{c} \vdots \\ \frac{\phi \wedge \psi}{\phi} \wedge E \end{array}\right) = hip(D) \tag{$\wedge E$}$$

$$hip\left(D \begin{array}{c} : \\ \underline{\phi \wedge \psi} \\ \hline \phi \end{array} \wedge E\right) = hip(D) \tag{$\wedge E$}$$

(RAA)

Ejemplo de función recursiva

$$hip\left(D \stackrel{\vdots}{\underset{\phi}{\cup}}\right) = hip(D) \setminus \{\phi\} \qquad (\to I)$$

$$\frac{hip\left(D_1 \stackrel{\vdots}{\underset{\phi}{\cup}}\right)}{\underbrace{\partial}} D_2 \stackrel{\vdots}{\underset{\phi}{\cup}} D_2 \stackrel{\vdots}{\underset{\phi}{\cup}} D_1) \cup hip(D_2) \qquad (\to E)$$

$$hip\left(D \stackrel{\vdots}{\underset{\phi}{\cup}} \bot E\right) = hip(D) \qquad (\bot E)$$

$$[\neg \phi]$$

$$hip\left(D \stackrel{\vdots}{\underset{\phi}{\cup}} \bot E\right) = hip(D) \setminus \{\neg \phi\} \qquad (RAA)$$

Pispeando el futuro: corrección

Teorema (Corrección)

Si $\Gamma \vdash Q$, entonces $\Gamma \models Q$.

- Recordemos que Γ ⊢ Q significa que existe una derivación D tal que hip (D) ⊆ Γ y concl (D) = Q.
- El enunciado preciso que probaremos es: Para toda derivación D, si $hip\left(D\right)\subseteq\Gamma$ y $concl\left(D\right)=Q$, entonces $\Gamma\models Q.$
- Para la prueba utilizaremos inducción en derivaciones.

Pispeando el futuro: completitud

Teorema (Completitud)

Si $\Gamma \models Q$, entonces $\Gamma \vdash Q$.

- Como $\Gamma \models Q$, entonces para todo modelo f de Γ , $[\![Q]\!]_f = 1$;
- por lo tanto no existe modelo de $\Gamma \cup \{\neg Q\}$.
- Si no existe modelo de Δ , entonces $\Delta \vdash \bot$.
- Con el punto anterior y RAA podemos concluir $\Gamma \vdash Q$.