L

Parte II: Lógica Proposicional

11 de octubre de 2017

Semántica

- Una asignación $f: \mathcal{V} \to 2$, induce la semántica $\llbracket \rrbracket_f \colon Prop \to 2$.
- La asignación f satisface la fórmula ϕ si $[\![\phi]\!]_f=1.$
- f es modelo de $\Gamma \subseteq Prop$, si para toda $\psi \in \Gamma$, $[\![\psi]\!]_f = 1$.
- ϕ es consecuencia lógica de Γ si todo modelo de Γ satisface ϕ .

- Construcción de pruebas usando reglas de inferencias.
- Definición por inducción del conjunto ${\mathcal D}$ de derivaciones.
- φ se deduce de Γ, Γ ⊢ φ, si existe una derivación D tal que hip(D) ⊆ Γ y concl(D) = φ.
- Pero, realmente las reglas nos permiten concluir proposiciones verdaderas a partir de hipótesis verdaderas?

Derivabilidad y contra-ejemplos

De los siguientes pares de afirmaciones ¿cuáles son correctos?

$$\{p_0, p_1\} \vdash p_2 \qquad \{p_0, p_1\} \not\vdash p_2$$
 $\vdash \bot \qquad \not\vdash \bot$

Y de estos pares que siguen, cuáles son correctos?

$$\{p_0, p_1\} \models p_2 \qquad \{p_0, p_1\} \not\models p_2$$

 $\models \bot \qquad \not\models \bot$

ļ

- ¿Cómo podemos probar o refutar las anteriores afirmaciones?
- Las segundas afirmaciones (aquellas que hablan de modelos) las podemos comprobar rápidamente construyendo las tablas de verdad.
- En cambio, para verificar la validez de una las primeras afirmaciones debemos o bien construir una derivación,
- o bien mostrar que no existe ninguna derivación con la conclusión esperada y las hipótesis permitidas.
- Por ejemplo, como podemos estar seguros que no podemos concluir \perp utilizando una regla de eliminación o RAA?

Corrección

- Como la validez de las fórmulas está dada por su semántica, entonces podemos utilizar la noción de ⊨ para expresar la corrección.
- Una derivación $D \in \mathcal{D}$ con $hip(D) \subseteq \Gamma$ y $concl(D) = \phi$ es correcta si todo modelo de Γ satisface ϕ .
- Nuestro trabajo será mostrar que toda derivación es correcta.

Derivabilidad y contra-ejemplos

para concluir

 Volviendo a las pregunta del principio, suponiendo corrección, cómo podemos usar

$$\{p_0, p_1\} \not\models p_2$$
 y $\not\models \bot$ $\{p_0, p_1\} \not\vdash p_2$ y $\not\vdash \bot$

- Si suponemos que existe una derivación para $\{p_0,p_1\} \vdash p_2$, entonces para toda asignación f de $\{p_0,p_1\}$, tendríamos $[\![p_2]\!]_f=1$.
- Sin embargo la siguiente asignación es un contraejemplo:

$$egin{aligned} f \, p_0 &= 1 \ f \, p_1 &= 1 \ f \, p_j &= 0 \end{aligned} \qquad \mathsf{para} \,\, j > 1$$

 Por lo tanto, estamos en una contradicción y la derivación que supusimos no puede existir.

Teorema de corrección

- Para probar este teorema usaremos inducción en sub-derivaciones, para ello establecemos el siguiente predicado A sobre derivaciones.
- Sea D $\stackrel{:}{\phi}$, entonces A(D) vale si y solo si "para todo Γ tal que $hip(D)\subseteq \Gamma$, se da $\Gamma \models \phi$ ".
- Por ejemplo, si D es la derivación $\frac{-\phi \wedge \psi}{\phi} \wedge E$, entonces A(D) vale.

Tomemos Γ tal que $\phi \wedge \psi \in \Gamma$, comprobemos $\Gamma \models \phi$.

- Para ello tomemos un modelo f de Γ y verifiquemos $[\![\phi]\!]_f=1.$
- Como f es modelo Γ y $\phi \wedge \psi \in \Gamma$, entonces $[\![\phi \wedge \psi]\!]_f = 1$, por lo tanto $[\![\phi]\!]_f = 1$.

Teorema de corrección

Teorema

Si
$$\Gamma \vdash Q$$
, entonces $\Gamma \models Q$.

$$(Prop)$$
 Sea D la derivación P y sea $\{P\} \subseteq \Gamma$, es inmediato $\Gamma \models P$.

$$(\wedge E) \text{ Sea } D \text{ la derivación } D' \underbrace{ \begin{array}{c} \vdots \\ P \wedge Q \\ \end{array}}_{} \wedge E$$

Puesto que D' es la subderivación de D, entonces podemos asumir la hipótesis inductiva para D':

para todo
$$\Gamma'\supseteq hip(D')$$
, se da $\Gamma'\models P\wedge Q$.

Para mostrar A(D), tomamos $\Gamma \supseteq hip(D)$ y probamos $\Gamma \models P$. Sea f una asignación arbitraria de Γ , veamos $\llbracket P \rrbracket_f = 1$.

Como hip(D)=hip(D'), para Γ tenemos $\Gamma \models P \land Q$, es decir $\llbracket P \land Q \rrbracket_f = 1$. De lo cual concluimos $\llbracket P \rrbracket_f = 1$.

$$(\wedge I) \text{ Sea } D \text{ la derivación } \begin{array}{ccc} D_1 & \vdots & & \vdots \\ P & & Q & \\ \hline P \wedge Q & \wedge I \end{array} \text{, veamos } A(D).$$

Como antes, aumimos la h.i. tanto para D_1 para todo $\Gamma_1\supseteq hip(D_1)$, $\Gamma_1\models P$

como para D_2

para todo
$$\Gamma_2\supseteq hip(D_2)$$
, $\Gamma_2\models Q$

Sea $\Gamma \supseteq hip(D)$ y sea f una asignación de Γ . Como $hip(D_i) \subseteq hip(D) \subseteq \Gamma$, tenemos, aplicando la h.i. en D_1 , $\llbracket P \rrbracket_f = 1$ y, análogamente usando la h.i. en D_2 sabemos $\llbracket Q \rrbracket_f = 1$. Por lo tanto, tenemos $\llbracket P \wedge Q \rrbracket_f = 1$.

[P]

 $(\to I)$ Sea D la derivación $\begin{array}{cc} D' & \vdots \\ \hline Q \\ \hline P \to Q \end{array} \to I$

En este caso asumimos que la h.i. vale para D': para todo $\Gamma'\supseteq hip(D_1),\ \Gamma'\models Q.$

Tomemos $\Gamma\supseteq hip(D)$ y f una asignación de Γ , probemos $\llbracket P\to Q\rrbracket_f=1$, es decir $\max(1-\llbracket P\rrbracket_f,\llbracket Q\rrbracket_f)=1$. Como $hip(D)=hip(D')\setminus\{P\}$, que f sea de Γ no nos dice nada sobre el valor de $\llbracket P\rrbracket_f$. Si $\llbracket P\rrbracket_f=0$, entonces $\max(1-\llbracket P\rrbracket_f,\llbracket Q\rrbracket_f)=\max(1-0,\llbracket Q\rrbracket_f)=1$.

El otro caso es si $[\![P]\!]_f=1$; pero ahora f es una asignación de $\Gamma\cup\{P\}$; usando la hipótesis inductiva en D', con $\Gamma'=\Gamma\cup\{P\}$, deducimos $[\![Q]\!]_f=1$. De lo cual concluimos $\max(1-[\![P]\!]_f,[\![Q]\!]_f)=\max(1-[\![P]\!]_f,1)=1$.

 $(\rightarrow E) \text{ Sea } D \text{ la derivación } D_1 \overset{\vdots}{\underset{P}{\longrightarrow}} D_2 \overset{\vdots}{\underset{P \rightarrow Q}{\longrightarrow}} D_2 \xrightarrow{P \rightarrow Q} E$ En este caso asumimos la h.i. sobre D_1 y sobre D_2 . Sea $\Gamma \supseteq hip(D)$, entonces $\Gamma \supseteq D_i$. Sea f una asignación de Γ ; por h.i., entonces $\llbracket P \rrbracket_f = 1$ y también $\llbracket P \rightarrow Q \rrbracket_f = 1$. Es decir $1 = \max(1 - \llbracket P \rrbracket_f, \llbracket Q \rrbracket_f) = \max(0, \llbracket Q \rrbracket_f)$; por lo tanto, $\llbracket Q \rrbracket_f = 1$.

$$[\neg P]$$

(RAA) Sea D la derivación $D' \stackrel{\vdots}{\underset{P}{\longleftarrow}} RAA$.

Ahora podemos asumir la h.i. para D': para todo $\Gamma'\supseteq hip(D')$, $\Gamma'\models\bot$!

Sea $\Gamma \supseteq hip(D') \setminus \{\neg P\}$ y sea f una asignación de Γ . Veamos $[\![P]\!]_f = 1$.

Supongamos que para toda f de Γ , tenemos $\llbracket P \rrbracket_f = 0$. Es decir, $\llbracket \neg P \rrbracket_f = 1$; por lo tanto f es de $\Gamma \cup \{ \neg P \}$.

Eso nos permite utilizar la h.i. sobre D' y concluir $[\![\bot]\!]_f=1$, lo cual es una contradicción. Por lo tanto se debe dar $[\![P]\!]_f=1$.

 $(\perp E)$ Sea D la derivación D' $\stackrel{:}{\underset{P}{\underline{\perp}}} \perp E$

En este caso asumimos la h.i. sobre D'.

Sea $\Gamma\supseteq hip(D)$, entonces $\Gamma\supseteq hip(D')$. Sea f una asignación de Γ ; por h.i., entonces $[\![\bot]\!]_f=1$.

Lo último es absurdo y facilmente podemos concluir $[\![P]\!]_f=1.$

Repaso

- Ahora podemos probar $\not\vdash \bot$: Supongamos que $\vdash \bot$, entonces para toda asignación f tenemos $[\![\bot]\!]_f=1$ por corrección. Pero eso es absurdo; por lo tanto no existe derivación con conclusión \bot y todas sus hipótesis canceladas.
- El meta-teorema de corrección nos asegura que todo teorema es una tautología.
- Pero... sucederá lo recíproco? Es decir, podremos derivar todas las tautologías?
- En términos más generales: si $\Gamma \models P$, entonces $\Gamma \vdash P$?
- Es decir, se podrán hacer todas las derivaciones de premisas válidas a conclusiones válidas.