l

Parte II: Lógica Proposicional

13 de octubre de 2017

Semántica

- Una asignación $f: \mathcal{V} \to 2$, induce la semántica $\llbracket \rrbracket_f \colon Prop \to 2$.
- La asignación f satisface la fórmula ϕ si $[\![\phi]\!]_f=1.$
- f es modelo de $\Gamma \subseteq Prop$, si para toda $\psi \in \Gamma$, $[\![\psi]\!]_f = 1$.
- ϕ es consecuencia lógica de Γ si todo modelo de Γ satisface ϕ .

- Construcción de pruebas usando reglas de inferencias.
- Definición por inducción del conjunto ${\mathcal D}$ de derivaciones.
- φ se deduce de Γ, Γ ⊢ φ, si existe una derivación D tal que hip(D) ⊆ Γ y concl(D) = φ.
- Pero, realmente las reglas nos permiten concluir proposiciones verdaderas a partir de hipótesis verdaderas?

El plan de la clase de hoy

- Queremos probar $\Gamma \models \phi$ implica $\Gamma \vdash \phi$.
- Si $\Gamma \models \phi$, entonces no existe ningún modelo $\Gamma \cup \{\neg \phi\}$.
- Si no existe f de $\Gamma \cup \{\neg \phi\}$, entonces $\Gamma \cup \{\neg \phi\} \vdash \bot$. ¡Esto es lo difícil!
- Por lo tanto, $\Gamma \vdash \phi$ por RAA.

- Un conjunto $\Gamma \subseteq Prop$ es **in**consistente si $\Gamma \vdash \bot$.
- Un conjunto $\Gamma \subseteq Prop$ es consistente si $\Gamma \not\vdash \bot$.
- Sea $\Gamma \subseteq Prop$, Γ es inconsistente si y sólo si Existe $\phi \in Prop$ tal que $\Gamma \vdash \phi$ y $\Gamma \vdash \neg \phi$. Para toda $\phi \in Prop$, $\Gamma \vdash \phi$.

- Si $\Gamma \cup \{\neg \phi\} \vdash \bot$, entonces $\Gamma \vdash \phi$.
- Si $\Gamma \cup \{\phi\} \vdash \bot$, entonces $\Gamma \vdash \neg \phi$.

Criterios de consistencia

- ¿Cómo podemos saber si un conjunto Γ es consistente?
- Para probar que ∅ es consistente (es decir ⊬ ⊥), usamos la contra-recíproca de corrección.
- Si existe un modelo Γ , entonces Γ es consistente.
 - Sea f un modelo de Γ y supongamos $\Gamma \vdash \bot$ (para llegar a una contradicción). Entonces $[\![\bot]\!]_f = 1$: la contradicción que buscábamos. Por lo tanto $\Gamma \not\vdash \bot$.
- $\[\[\{p_0, \neg p_1, p_2, \neg p_3, \dots, p_{2*k}, \neg p_{2*k+1}, \dots \} \]$ es consistente?
- Para ver que un conjunto Γ es inconsistente, debemos mostrar $\Gamma \vdash \bot !$

- ¿Será cierta la vuelta del criterio de consistencia?
- Sea Γ es consistente, ¿existe un modelo de Γ ?
- Supongamos que $\Gamma \cup \{\neg \phi\}$ no tiene un modelo. Entonces $\Gamma \cup \{\neg \phi\}$ es inconsistente: $\Gamma \cup \{\neg \phi\} \vdash \bot$ Por lo tanto, $\Gamma \vdash \phi$.

- Un conjunto $\Gamma \subseteq Prop$ es consistente maximal si para todo Δ consistente, $\Gamma \subseteq \Delta$ implica $\Delta = \Gamma$.
- Prácticamente, Δ es consistente maximal si no existe $\psi \notin \Delta$, tal que $\Delta \cup \{\psi\}$ siga siendo consistente.
- Los consistentes maximales son cerrados por derivación: si Δ es consistente maximal, entonces $\Delta \vdash \phi$ implica $\phi \in \Delta$.

Consistentes maximales

- Sea Δ un conjunto maximal, entonces Δ realiza los conectivos.
 - 1 Para toda $\phi \in Prop$, $\phi \notin \Delta$ si y sólo si $\neg \phi \in \Delta$.
 - $2 \ \phi \in \Delta \ \text{y} \ \psi \in \Delta \ \text{si y s\'olo si} \ \phi \wedge \psi \in \Delta.$
 - 3.a Si $\phi \in \Delta$ implica $\psi \in \Delta$, entonces $\phi \to \psi \in \Delta$.
 - 3.b Si $\phi \to \psi \in \Delta$, entonces $\phi \in \Delta$ implica $\psi \in \Delta$.
- En los tres casos concluimos que la proposición está en Δ , porque Δ es cerrado por derivaciones.

Consistentes maximales

- Supongamos que Δ es consistente maximal.
- Si sabemos que ciertas proposiciones están en Δ , entonces podemos saber que otras también están.
- Ejemplo: Si $\phi \in \Delta$, entonces $\psi \to \phi \in \Delta$, para todo ψ .
- Si Γ es consistente, entonces pueden existir varios Δ_i y consistentes maximales tales que $\Gamma \subseteq \Delta_i$.
- Ejemplo: ∅ es consistente (¿por qué?) y hay muuchos maximales que lo contienen.

Existencia de valuación

- Sea Δ consistente maximal, entonces para toda $\phi \in Prop$ o bien $\phi \in \Delta$ o bien $\neg \phi \in \Delta$.
- Si Δ es consistente maximal, entonces existe un modelo de Δ . Definamos $f \colon \mathcal{V} \to \{0,1\}$ de la siguiente manera:

$$f p_i = 1$$
 $\operatorname{si} p_i \in \Delta$ $f p_i = 0$ $\operatorname{si} p_i \not\in \Delta$

Probamos $[\![\psi]\!]_f=1$ si y sólo si $\psi\in\Delta$, usando inducción en $\psi.$

Extension a maximales

• Para ver que todo conjunto consistente Γ tiene un modelo, lo extendemos a uno maximal Γ^* .

Como las proposiciones son numerables, podemos pensarlas dadas por una lista infinita: $\phi_0,\phi_1,\phi_2,\dots$

$$\begin{split} &\Gamma_0 = \Gamma \\ &\Gamma_{n+1} = \begin{cases} \Gamma_n & \text{si } \Gamma_n \cup \{\phi_n\} \vdash \bot \\ \Gamma_n \cup \{\phi_n\} & \text{si } \Gamma_n \cup \{\phi_n\} \not\vdash \bot \end{cases} \\ &\Gamma^* = \bigcup_{n \in \mathbb{N}} \Gamma_n \end{split}$$

• Γ^* es consistente maximal.

Recapitulando

- Si f es modelo de Δ y $\Gamma \subseteq \Delta$, entonces f es modelo de Γ .
- Todo maximal tiene un modelo y todo consistente se extiende a uno maximal, por lo tanto todo consistente tiene un modelos.
- La contrarecíproca de lo anterior nos dice, si Γ no tiene un modelo, entonces Γ es inconsistente.

Teorema de completitud

Teorema

Si $\Gamma \models \phi$, entonces $\Gamma \vdash \phi$.

Supongamos $\Gamma \models \phi$. Entonces no existe f de $\Gamma \cup \{\neg \phi\}$.

Entonces, por criterio de consistencia, $\Gamma \cup \{\neg \phi\}$ es inconsistente.

Por lo tanto $\Gamma \vdash \phi$.