Autómatas Finitos Deterministicos (DFA)

Introducción a la Lógica y la Computación FaMAF, Universidad Nacional de Córdoba

31/10/18

Info útil

Bibliografía:

- Introducción a la teoría de autómatas, lenguajes y computación.
 - Autores: Hopcroft, John E; Ullman, Jeffrey D.
 - Ubicación en Biblioteca: C C1.3 H791.
- Apunte de la cátedra.
 - https://wiki.cs.famaf.unc.edu.ar/lib/exe/fetch. php?media=intrologica:2017:automatas-2.pdf

Temas del día

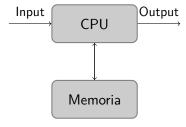
- Introducción
 - Modelos de Computación
- 2 Autómata Finito Deterministico (DFA)
 - Intuiciones
 - Definición
- 3 Lenguajes y Autómatas
 - Lenguajes

Modelos de Computación

- Modelo de computación: es un modelo matemático que aproxima el funcionamiento de una computadora.
- Sirven para estudiar sus capacidades y limitaciones.
 - Computabilidad: ¿Qué problemas puede resolver una computadora?
 - Complejidad: ¿Cuáles son los problemas computacionalmente dificiles?
- Existen diferentes modelos de computación:
 - Máquinas de Turing (Turing 1936)
 - Cálculo Lambda (Church 1936)
 - Autómatas Finitos (Rabin y Scott 1950)
 -
- Diferente poder de cómputo.

Modelo General de Máquina

• En su forma mas básica:

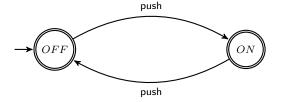


- El tipo de memoria afecta el poder computacional.
 - Sin memoria: Autómatas finitos.
 - Con una pila como memoria: Push Down Automatas.
 - Con memoria de acceso aleatorio: Maquinas de Turing.
- En esta materia estudiaremos los Autómatas Finitos.

Intuiciones I

- Es común modelar sistemas como:
 - conjunto de estados, y
 - acciones que llevan de un estado a otro.
- **Estado**: Es una parte relevante de la historia del sistema.

Ejemplo: Interruptor (o switch)



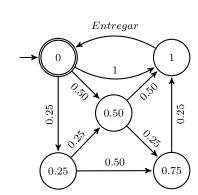
- Puede estar en ON u OFF (sus estados).
- Apretandolo pasa de un estado a otro.
- Si está en ON \rightarrow estaba en OFF y alguien lo apretó.
- Si está en OFF \rightarrow o bien estaba en ON y alguien lo apretó, o nadie apretó el interruptor todavía.

Intuiciones II

- El sistema empieza en un determinado estado.
- Existen estados **finales** (o de aceptación).
- El efecto de una acción depende del estado actual.

Ejemplo: Expendedor de golosinas.

- Estado: Dinero que tiene.
- Inicialmente sin dinero (\$0).
- Entrega golosina **solo si tiene** \$1.
- Acepta: Monedas de 0.25, 0.50 y 1.



Intuiciones III

¿Qué tienen en común estos ejemplos:?

Estados iniciales:

Estados finales:

Acciones para pasar de un estado a otro.

$$\{push\}$$
 $\{0.25, 0.50, 1, Entregar\}$

• El efecto de una acción depende del estado donde se aplica.

AUTOMATAS FINITOS DETERMINISTICOS.

Definición

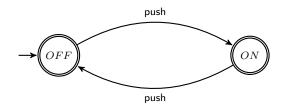
- Autómata: Modelo matemático de un sistema con entradas y salidas discretas.
- Finito: Tiene un nro. finito de estados.
- Determinístico: En todo momento está en un solo estado.

Autómata Finito Deterministico (DFA)

Un DFA es una 5-tupla $M=(Q,\Sigma,\delta,q_0,F)$ donde:

- $Q = \{q_1, q_2, \dots, q_m\}$ es un conjunto finito de estados.
- $\Sigma = \{a_1, a_2, \dots, a_n\}$ es un conjunto finito de símbolos.
- $\delta: Q \times \Sigma \mapsto Q$ es la función (total) de transición de estados.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ son los estados finales.

Ejemplo - Interruptor



Definimos $M = (Q, \Sigma, \delta, q_0, F)$:

- $Q = \{ON, OFF\}.$
 - $\Sigma = \{push\}.$
 - $q_0 = OFF$.
 - $F = \{ON, OFF\}.$

• δ definida como:

$$\delta(ON, push) = OFF.$$

 $\delta(OFF, push) = ON.$

Ejemplo - Expendedor de Golosinas

Definimos $M = (Q, \Sigma, \delta, q_0, F)$:

- $Q = \{0, 0.25, 0.50, 0.75, 1\}.$
- $q_0 = 0$.
- $F = \{0\}.$
- ullet δ definida como:

	0.25	0.50	1	E
$\rightarrow *0$	0.25	0.50	1	_
0.25	0.50	0.75	_	_
0.50	0.75	1	_	_
0.75	1	_	_	_
1	_	_	_	0

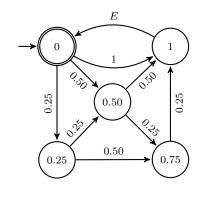


Diagrama de Transición

Algoritmo de Generación de Diagramas de Transición

Dado un autómata $M=(Q,\Sigma,\delta,q_0,F)$, su diagrama de transición se construye de la siguiente forma:

- **①** Se agrega un nodo para cada estado $q_i \in Q$.
- ② Marcamos al nodo del estado inicial q_0 con una flecha que ingresa.
- **3** Marcamos los estados finales $q_i \in F$ con doble círculos.
- Agregamos un eje etiquetado a del nodo q_i al nodo q_j si existe una transición $\delta(q_i,a)=q_j$.

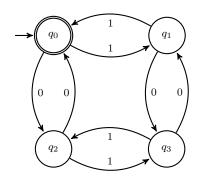
Todo DFA tiene su correspondiente diagrama de transición.

Ejemplo 5 - Creando un Diagrama de Transición

Sea $M = (Q, \Sigma, \delta, q_0, F)$:

- $Q = \{q_0, q_1, q_2, q_3\}.$
- $\Sigma = \{0, 1\}.$
- Estado inicial: q_0 .
- $F = \{q_0\}.$
- \bullet δ definida como:

	0	1
$\rightarrow * q_0$	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	q_1	q_2



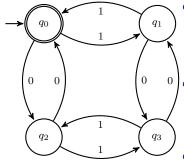
Algunas Definiciones

- Alfabeto (Σ): es un conjunto finito de símbolos.
 - Ej: $\Sigma = \{0, 1\}.$
- Cadena (o palabra): secuencia finita de símbolos.
 - Ej: 01, 000111, 1010.
- ϵ : es la cadena vacía (sin símbolos).
- Σ^* : conjunto de todas las palabras sobre Σ .
 - Ej: $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 000111, 1010, \ldots\}.$
- **Lenguaje**: Un lenguaje L sobre un alfabeto Σ es un conjunto de palabras sobre el alfabeto Σ ($L \subseteq \Sigma^*$).
 - Ej: $L = \{w \mid w \text{ termina en } 1\} \subseteq \Sigma^*$.

Operaciones sobre Cadenas

- Longitud de una cadena w (|w|): es el nro. de símbolos.
 - |abab| = 4, $|\epsilon| = 0$.
- Subcadena: es una cadena incluida en una cadena.
 - Si w = bbabaa, ab es subcadena de w, aab no.
- Prefijo de una cadena w: es una subcadena de w que comienza con el primer símbolo de w.
 - ullet Si w=bbabaa, bba es un prefijo de w, ba no.
- Sufijo de una cadena w: es una subcadena de w que termina con el último símbolo de w.
 - Si w = bbabaa, baa es un sufijo de w, aba no.
- Concatenación de dos cadenas w y x (wx): es la unión de las cadenas w y x.
 - Si w = aaa y x = bbb, wx = aaabbb.
 - $a\epsilon = \epsilon a = a$.

Intuiciones



- Consideremos secuencias de símbolos.
- A que estado nos llevan la secuencias:
 - $\langle 1, 0, 0, 0, 1 \rangle : q_0 \to q_2.$
 - $(0,1,0,1): q_0 \to q_0.$
 - $\langle 0,1\rangle: q_0 \to q_3.$
- Secuencia como "palabras".
 - $\langle 1, 0, 0, 0, 1 \rangle \equiv 10001$.
 - $\langle 0, 1, 0, 1 \rangle \equiv 0101.$
 - $(0,1) \equiv 01.$
- Un autómata acepta palabras.
- ullet Palabras aceptadas \equiv Lenguaje del autómata.
- El lenguaje caracteriza al autómata.
- ¿Cuál es el lenguaje de este autómata?

Definiciones

Transforma en (\rightarrow)

Sea M un DFA, sean p,q estados de M y $\alpha=a_0a_1\dots a_n$ una cadena en M. Diremos que α transforma p en q $(p\overset{\alpha}{\to}q)$ si partiendo de p y aplicando sucesivamente los inputs a_0,a_1,\dots,a_n llegamos al estado q.

- $p \xrightarrow{\epsilon} p$ (ϵ transforma un estado en si mismo).
- Si $\alpha = a_0 a_1 \dots a_n$:
 - $p \xrightarrow{\alpha} q \equiv p \xrightarrow{a_0} q_1 \xrightarrow{a_1} \dots \xrightarrow{a_{n-1}} q_n \xrightarrow{a_n} q$.
- Si $\alpha = \beta \gamma$, donde β y γ son cadenas, entonces:
 - $p \xrightarrow{\alpha} q$ sii existe $r \in Q$ tal que $p \xrightarrow{\beta} r \xrightarrow{\gamma} q$.
- Una cadena α en M es **aceptada** si transforma el estado inicial en uno final.

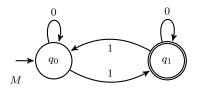
Lenguaje de un Autómata

Lenguaje aceptado por un autómata

Sea M un DFA, el **lenguaje aceptado por M (**L(M)**)** es el conjunto de cadenas aceptadas por el autómata.

$$L(M) = \{ \alpha \in \Sigma^* | \text{ existe } p \in F \text{ tal que } q_0 \stackrel{\alpha}{\to} p \}.$$

Ejemplo 5



 \bullet ¿Cuál es lenguaje de M?

$$L(M) = \{ w \mid w \text{ tiene un nro impar de 1's} \}.$$

• ¿Cómo estamos seguros? Probando el siguiente predicado:

$$q_0 \stackrel{w}{\to} q_1$$
 si y solo si w tiene un nro. impar de $1's$.

• ¿Cómo se prueba? Por inducción en |w|.

Equivalencia de Autómatas

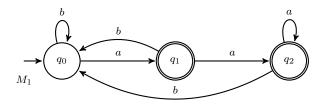
- Un autómata esta caracterizado por su lenguaje.
- Podemos comparar los lenguajes de dos autómatas.
- Igualdad de lenguajes → noción de equivalencia entre autómatas.

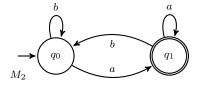
Equivalencia de Autómatas

Sean M y M^\prime dos DFA. Diremos que M y M^\prime son equivalentes si:

$$L(M) = L(M').$$

Ejemplo 6





- ¿ Son equivalentes M_1 y M_2 ?
- ¿ Cuál es el lenguaje de M_1 ?
- ¿ Cuál es el lenguaje de M_2 ?