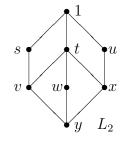
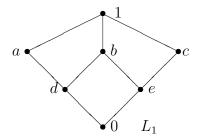
Introducción a la Lógica y la Computación - Estructuras de orden 21/09/2018, Práctico 5: Reticulados complementados y distributivos.

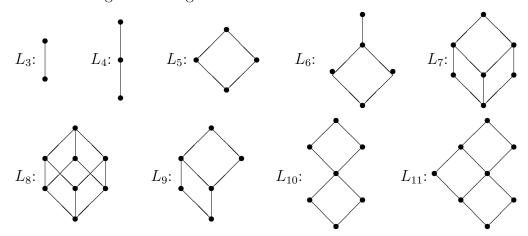
Objetivos. Corroborar si un reticulado es complementado, comprobando si es acotado y todo elemento tiene, al menos, un complemento. Distinguir reticulados distributivos; apropiarse de diferentes métodos de verificar si un reticulado es distributivo o no. Evaluar la satisfacción de ciertas propiedades en reticulados distributivos y no distributivos.

- 1. Considere el reticulado L_2 de la siguiente figura.
 - a) ¿Es L_2 un reticulado complementado?
 - b) Encuentre un elemento con dos complementos.
 - c) ¿Es L_2 un reticulado distributivo?
- 2. Considere ahora el reticulado L_1 .





- a) Dé los complementos, si es que existen, de los siguientes elementos: a, b, d, 0.
- b) ¿Es L_1 un reticulado complementado?
- c) ¿Es L_1 un reticulado distributivo?
- 3. Considere los siguientes diagramas.



- a) Determine cuáles son reticulados distributivos.
- b) Determine cuáles son isomorfos a algún $(D_n, |)$.
- c) Determine cuáles son sub-reticulados de $\mathcal{P}(X)$ para algún conjunto X.
- 4. Determine si los reticulados $(D_{18}, |)$ y $(D_{30}, |)$ son complementados y/o distributivos.
- 5. Dar el diagrama de Hasse de un reticulado no distributivo donde todo elemento tenga a lo sumo un complemento.
- 6. Enumere todos los métodos que utilizó en los ejercicios anteriores para determinar si un reticulado era o no distributivo. Es importante también identificar los resultados teóricos que están implicados en cada método.
- 7. Sea (S, \leq) un reticulado. Demuestre que si $x \leq y$, entonces para todo z en S, $x \otimes (z \otimes y) \leq (x \otimes z) \otimes y$. Compruebe que si (S, \leq) es distributivo vale la igualdad. Si en un reticulado vale la igualdad para todo x < y, ¿es distributivo?
- 8. Sea (S, \leq) un reticulado distributivo. Demuestre que si para todo x e y en S, existe a en S tal que valen tanto $x \otimes a = y \otimes a$ como $x \otimes a = y \otimes a$, entonces x = y.
- 9. Recíprocamente, sea (S, \leq) un reticulado que satisface lo siguiente para todo x e y en S: si existe a en S tal que $x \otimes a = y \otimes a$ y $x \otimes a = y \otimes a$, entonces x = y. Demuestre que (S, \leq) es distributivo. Ayuda: observar lo que ocurre en M_3 y N_5 .