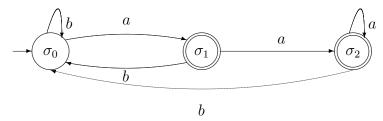
Introducción a la Lógica y la Computación - Autómatas y Lenguajes 31/10/2018, Práctico 1: Autómatas finitos determinísticos

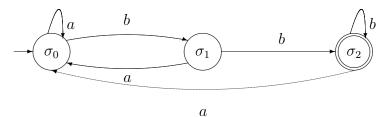

1. Trace los diagramas de transición de los DFA dados por las siguientes reglas de transición. Aquí, el conjunto de estados es $\{q_0, q_1, q_2\}$; el de símbolos de input $\{a, b\}$, y el estado inicial q_0

$\mid a$	b		(
$\overline{q_1}$	q_0	q_0	
	q_0	$q_1 \mid$	
1	q_2	q_2	

Autómata M_1 . Estados finales: q_0 Autómata M_2 . Estados finales: q_0, q_2

2. Determine si las cadenas

abbaa abb aba abaaaaa abbbbbbaab son aceptadas por el DFA definido por el siguiente diagrama


Si la cadena ω es aceptada,

¿toda subcadena de ω es aceptada? ¿es aceptada la cadena $\omega\omega$?

- 3. Considere el autómata del ejercicio anterior. Justifique las siguientes afirmaciones:
 - (a) Si ω es aceptada, entonces termina en a.
 - (b) Si ω termina en a, entonces es aceptada.

(Ayuda para (b): si $\omega = \alpha a$, dónde termino después de recorrer α ?)

4. Caracterice en palabras el lenguaje aceptado por el autómata. Luego justifique su afirmación.

- 5. Construir un autómata finito determinístico con alfabeto $\Sigma = \{a, b\}$ que acepte cadenas que empiecen con ab y terminen con ba.
- 6. Hallar un autómata finito determinístico que acepte exactamente el lenguaje de las cadenas sobre el alfabeto $\Sigma = \{0,1\}$ que tienen una cantidad par de 1's y el número de 0's es múltiplo de 3.