Parte III: Lenguajes y Autómatas

9 de noviembre de 2018

Repaso

Alfabeto Conjunto finito no vacío, habitualmente usamos Σ para referirnos a alfabetos.

Cadena (fijado el alfabeto) Secuencia finita de símbolos de Σ .

Lenguaje un subconjunto de Σ^* .

Lenguaje Regular puede ser reconocido por un AFD.

Hablemos de lenguajes

Puesto que un lenguaje es un subconjunto de Σ^* podemos hablar de:

vacío Ø

total Σ^*

 ${\bf complemento} \qquad \bar{L} = \Sigma^* \setminus L$

intersección $L \cap L' = \{ \alpha \mid \alpha \in L \text{ y } \alpha \in L' \}$

unión $L \cup L' = \{ \alpha \mid \alpha \in L \text{ o } \alpha \in L' \}$

 ${\bf concatenaci\'on} \qquad LL' = \{\alpha\beta \,|\, \alpha \in L \ \ {\bf y} \ \ \beta \in L'\}$

Autómatas finitos deterministas (AFD)

Un autómata finito determinista A es una tupla $(Q, \Sigma, \delta, q_0, F)$, donde:

- 1. Un conjunto finito de estados Q.
- 2. Un alfabeto Σ .
- 3. Una función de transición $\delta\colon Q\times \Sigma\to Q$.
- 4. Un estado inicial $q_0 \in Q$.
- 5. Un conjunto de estados finales $F \subseteq Q$.

Lenguaje de un autómata y Lenguajes Regulares

Extendemos δ a palabras:

$$\hat{\delta} \colon Q \times \Sigma^* \to Q$$
$$\hat{\delta}(q, \epsilon) = q$$
$$\hat{\delta}(q, x\alpha) = \hat{\delta}(\delta(q, x), \alpha)$$

El lenguaje del autómata A

$$L_A = \{ \alpha \in \Sigma^* \mid \hat{\delta}(q_0, \alpha) \in F \}$$

Dado un lenguaje cualquiera L, diremos que L es $\it regular$ si existe un autómata finito determinista A tal que $L=L_A$.

Observación: puede haber estados inalcanzables Si $q'\in Q$, no necesariamente existen $q\in Q, x\in \Sigma$ con $\delta(q,x)=q'.$

Hablemos de lenguajes

Puesto que un lenguaje es un subconjunto de Σ^* podemos hablar de:

vacío
$$\emptyset$$
 total Σ^* complemento $\bar{L}=\Sigma^*\setminus L$ intersección $L\cap L'=\{\alpha\,|\,\alpha\in L\,\,\mathrm{y}\,\,\alpha\in L'\}$

 $unión \hspace{1cm} L \cup L' = \{\alpha \, | \, \alpha \in L \ \ \text{o} \ \ \alpha \in L'\}$

concatenación $LL' = \{ \alpha \beta \mid \alpha \in L \text{ y } \beta \in L' \}$

¿Asumiendo que L,L^\prime son regulares, son todas esas construcciones regulares también?

Ejercicios

- Definir un AFD A tal que $L(A) = \emptyset$.
- Definir un AFD A tal que $L(A) = \Sigma^*$.
- Definir un AFD A que reconozca palabras que comiencen con ba y terminen con ab.

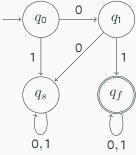
Equivalencia de Autómatas

Dos autómatas A, A' son equivalentes si $L_A = L_{A'}$.

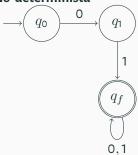
A continuación veremos otra clase de autómatas tales que todo AFD es equivalente a uno de nuestra clase (y viceversa).

Ejemplo: palabras que empiezan con 01

Determinista



No-determinista



Formalizando NFA

Un autómata finito no-determinista A consta (está determinado por) los siguientes componentes:

- 1. Un conjunto finito de estados Q.
- 2. Un alfabeto Σ .
- 3. Una función de transición (que codifica las aristas de la representación gráfica) $\delta \colon Q \times \Sigma \to \mathcal{P}(Q)$.
- 4. Un estado inicial $q_0 \in Q$.
- 5. Un conjunto de estados finales $F \subseteq Q$.

El único cambio está en la función de transición.

Aceptación para NFA

Informalmente la aceptación para un NFA está dada por la existencia de un camino que consume la palabra y termina en un estado final.

Como $\delta(p,q)$ es un conjunto de estados no podemos definir la extensión de δ tan sencillamente.

$$\hat{\delta} \colon Q \times \Sigma^* \to \mathcal{P}(Q)$$

$$\hat{\delta}(q, \epsilon) = \{q\}$$

$$\hat{\delta}(q, x\alpha) = \bigcup_{q' \in \delta(q, x)} \hat{\delta}(q', \alpha)$$

El lenguaje del autómata A son las palabras que comenzando en el estado inicial terminan (según $\hat{\delta}$) en uno final:

$$L_A = \{ \alpha \in \Sigma^* \mid \hat{\delta}(q_0, \alpha) \cap F \neq \emptyset \}$$

Todo AFD tiene un AFN equivalente

Sea
$$A=(Q,\Sigma,\delta,q_0,F)$$
 definimos
$$\delta_N\colon Q\times\Sigma\to \mathcal{P}(Q)$$

 $\delta_N(q,x) = \{\delta(q,x)\}$

Todo AFN tiene un AFD equivalente (método perezoso)

Intuición

Sea $A=(Q,\Sigma,\delta,q_0,F)$ el AFN, construimos un AFD A_D donde el conjunto de estados $Q_D\subseteq \mathcal{P}(Q)$.

Estados Comenzamos definiendo $q_0^D=\{q_0\}$ y por lo tanto $q_0^D\in Q_D$. Luego para cada $P\in Q_D$ y $x\in \Sigma$, calculamos

Transiciones

$$q_{P,x} = \bigcup_{q \in P} \, \delta(q,x) \, \, \, {
m y \, lo \, agregamos \, a} \, Q_D$$

$$\delta_D \colon Q_D \times \Sigma \to Q_D$$

 $\delta_D(P, x) = q_{P,x}$

Estados finales

$$F_D = \{ P \in Q_D \, | \, P \cap F \neq \emptyset \}$$

Todo AFN tiene un AFD equivalente (fuerza bruta)

Dado un AFN $A=(Q,\Sigma,\delta,q_0,F)$ definimos un AFD A_D donde el conjunto de estados $Q_D=\mathcal{P}(Q)$.

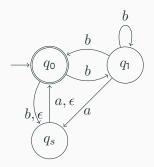
$$\delta_D \colon \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$$

$$\delta_D(P, x) = \bigcup_{q \in P} \delta(q, x)$$

AFN con transiciones ϵ (AFN- ϵ)

Intuición

Las transiciones ϵ no consumen ningún símbolo de la palabra.



¿Cuáles son los movimientos posibles con el símbolo a desde q_0 ?

Las transiciones ϵ nos permiten deducir $\delta(q, a) = \{q_0, q_s\}$.

AFN con transiciones ϵ (AFN- ϵ)

Formalmente

Asumimos $\epsilon \not\in \Sigma$, la función de transición debe indicar a qué estados llegamos con cada $x \in \Sigma$ y con ϵ .

$$\delta \colon Q \times \Sigma \cup \{\epsilon\} \to \mathcal{P}(Q)$$

Para definir formalmente $\hat{\delta}$ necesitamos la noción de clausura- ϵ .

primeros para estados

$$[q] = \{q\} \cup \{q' \in Q \mid q_m \in \delta(q, \epsilon) \text{ y } q' \in [q_m]\}$$

luego para un conjunto de estados

$$[P] = \bigcup_{q \in P} [q]$$

AFN con transiciones ϵ (AFN- ϵ)

Recordemos que usamos [P] es el conjunto de estados alcanzables via ϵ movimientos desde algún estado $q \in P$.

$$\hat{\delta} \colon Q \times \Sigma^* \to \mathcal{P}(Q)$$

$$\hat{\delta}(q, \epsilon) = [q]$$

$$\hat{\delta}(q, x\alpha) = \bigcup_{q_i \in [q]} \left(\bigcup_{q' \in \delta(q_i, x)} \hat{\delta}(q', \alpha) \right)$$

El lenguaje del autómata A

$$L_A = \{ \alpha \in \Sigma^* \mid \hat{\delta}(q_0, \alpha) \cap F \neq \emptyset \}$$

Eliminación de transiciones ϵ

Dada
$$\delta\colon Q imes \Sigma\cup\{\epsilon\} o \mathcal{P}(Q)$$
, definimos $\delta'\colon Q imes \Sigma o \mathcal{P}(Q)$
$$\delta'(q,x)=\bigcup_{q'\in[q]}[\delta(q',x)]$$

Necesitamos redefinir también el conjunto de estados finales:

$$F' = \begin{cases} F \cup \{q_0\} & \operatorname{si}[q_0] \cap F \neq \emptyset \\ F & \operatorname{si} \operatorname{no} \end{cases}$$

Teorema
$$(Q, \Sigma, \delta, q_0, F) = (Q, \Sigma, \delta', q_0, F').$$