Introducción a la Lógica y la Computación - Lógica proposicional 10/10/2018, Práctico 1: Sintaxis y semántica

- 1. Para las siguientes cadenas determinar cuáles están en Σ^* , cuáles en Prop, y cuáles en ninguno de los dos.
 - (a) $p_0 \to p_1$ (b) $((p \land p) \to p)$
 - (c) $(\varphi \vee \psi)$
 - (d) $(((p_1 \to p_2) \to p_1) \to p_2)$
- 2. Determine el menor n tal que $Prop_n$ contiene φ , para cada una de las siguientes proposiciones φ :
 - $a) (\neg p_0)$
 - $b) ((\neg p_0) \wedge (\neg (\neg \bot)))$
 - c) $(((\neg p_0) \lor p_{2312}) \land (\neg(\neg\bot)))$
- 3. Defina recursivamente una función $paren_izq(\varphi)$ que devuelva la cantidad de paréntesis izquierdos que posee φ , para cada $\varphi \in Prop$ (resp. $paren_der$).
- 4. Demuestre que toda $\varphi \in Prop$ tiene tantos "(" como ")".
- 5. Defina recursivamente una función $ocur(k,\varphi)$, que devuelva la cantidad de ocurrencias de p_k que posee φ , para cada $\varphi \in Prop$. (Note que para cada k fijo se está definiendo una función de Prop en los naturales.)
- 6. Defina la noción de subfórmula de una fórmula de Prop, a través de una una función $S(\varphi)$ que devuelva el conjunto subfórmulas de φ para cada $\varphi \in Prop$.
- 7. La definición de Prop determina en cada fórmula una estructura de árbol (grafo conexo y aciclo), el cual tiene un nodo "principal", llamado raiz. Por ejemplo, el árbol de la proposición $((\neg p_3) \lor (p_7 \land p_9))$ es:

$$\begin{array}{c|c}
 & \vee \\
 & \wedge \\
 & - \\
 & - \\
 & p_3 \quad p_7 \quad p_9
\end{array}$$

Puede encontrar alguna relación entre el n encontrado en el ejercicio 2 y alguna característica del árbol de la proposición?