Introducción a la Lógica y la Computación

Profesores: Mariana Badano, Raúl Fervari, Héctor Gramaglia, Miguel Pagano

Ayudantes: Emanuel Meriles, Maximiliano Villamajo, Franco Margaria

Estructura de la asignatura:

Parte I: Estructuras Ordenadas

Parte II: Lógica Proposicional

Parte III: Lenguajes y Autómatas

Agenda

Parte I: 17/8 al 9/9

Parte II: 16/9 al 19/10

Parte III: 21/10 al 18/11

Primer Parcial: 14/9

Segundo Parcial: 4/11

Recuperatorio y Coloquio: 23/11

Toda la información: http://www.cs.famaf.unc.edu.ar/wiki/

Introducción a la Lógica y la Computación

Parte I: Estructuras Ordenadas

2016

Ejes de Contenidos

- Relaciones
- Conjuntos Parcialmente Ordenados
- Álgebras de Boole y Reticulados
- Teoremas de representación

Definición de Relación

- Según la Real Academia Española, en su sentido matemático, el término significa:
 - "Resultado de comparar dos cantidades expresadas en números"
- Por ejemplo:
 - Es correcto afirmar que 2 es menor que 5.
 - Es incorrecto afirmar que 2 es divisor de 5.

Definición de Relación

O sea:

- La comparación de 2 con 5 arroja resultado positivo, si el criterio de comparación es "ser menor que"
- La comparación de 2 con 5 arroja resultado <u>negativo</u>, si el criterio de comparación es "ser divisor de"
- Podemos afirmar entonces que una relación queda determinada por el conjunto de pares que arrojan resultado positivo cuando son sometidos al "criterio de comparación" que determina la relación.

Definición Formal

Sean A y B dos conjuntos, una relación R entre A y B será un subconjunto del producto cartesiano $A \times B$

O sea: $R \subseteq A \times B$

Ejemplo

$$A = \{2, 4, 8, 10\}$$

$$B = \{1, 3, 9\}$$

La relación R = "es menor que" se representa matemáticamente mediante el siguiente subconjunto de $A \times B$:

$$R = \{(2,3), (2,9), (4,9), (8,9)\}$$

Entonces la afirmación:

- "2 es menor que 9" se formaliza expresando $(2,9) \in R$
- "4 no es menor que 1" se formaliza expresando (4,1) ∉ R

Notación

- Si R es una relación entre A y A, decimos que R es una relación sobre A
- Si R es una relación sobre A, y (a, b) ∈ R, entonces escribimos

$$a \sim_R b$$

o simplemente

$$a \sim b$$

Tipos fundamentales de relaciones

- Funciones
 No serán abordadas en este curso
- Relaciones de equivalencia
 Esta clase:
 su vinculación con las particiones de un conjunto
- Relaciones de orden
 Casi la totalidad de la primera parte de la materia

Propiedades de las relaciones

Sea R una relación sobre un conjunto A. Decimos que R es:

- reflexiva si y sólo si para todo $a \in A$: $a \sim a$
- simétrica si y sólo si para todo a, b ∈ A,
 a ~ b implica que b ~ a
- antisimétrica si y sólo si para todo a, b ∈ A
 a ~ b y b ~ a implican que a = b
- transitiva si y sólo si para todo a, b, c ∈ A,
 a ~ b y b ~ c implican que a ~ c

Ejemplo 1: Relación "divide"

Es la relación sobre **Z** definida mediante:

 $a \sim b$ si y sólo si a es divisor de b

En cursos anteriores se utilizó la notación a|b

¿Cuáles de las 4 propiedades son satisfechas por la relación divide?

Ejemplo 2: Relación "congruente módulo k"

Dado un k fijo, es la relación sobre **Z** definida mediante:

 $a \sim_k b$ si y sólo si k es divisor de b - a

En cursos anteriores se utilizó la notación $a \equiv b \mod(k)$

¿Cuáles de las 4 propiedades son satisfechas por la relación "congruente módulo k"?

Relaciones de equivalencia

Son las relaciones que satisfacen las propiedades reflexividad, simetría y transitividad

Por ejemplo, la relación "congruente módulo k" es una relación de equivalencia, cualquiera sea k

Clases de equivalencia

Sea \sim una relación de equivalencia sobre un conjunto A y sea x un elemento de A.

La clase de equivalencia de x se denota por [x] y es el conjunto

$$[x] = \{ y \in A \mid y \sim x \}$$

Por ejemplo, en la relación "congruente módulo 3",

$$[0] = \{0, 3, -3, 6, -6, 9, -9, ...\}$$

$$[1] = \{1, 4, -2, 7, -5, 10, -8, ...\}$$

$$[2] = \{2, 5, -1, 8, -4, 11, -7, ...\}$$

$$[3] = [0]$$

$$[4] = [1]$$

Partición de un conjunto

 $P_3: \{a, b, c\}.$

Una **partición** de un conjunto *A* es una familia de subconjuntos no vacíos de *A*, que son disjuntos entre sí, y cuya unión es todo *A*.

```
Por ejemplo, las siguientes son distintas particiones de A = \{a, b, c\}:

P_1 : \{a\}, \{b\}, \{c\};

P_2 : \{a\}, \{b, c\};
```

Teorema

Sea \sim una relación de equivalencia en un conjunto A y sean x, y elementos de A. Entonces

- \bullet [x] = [y] si y sólo si $x \sim y$.
- ② si $x \nsim y$, entonces [x] e [y] son disjuntas.

Relación de equivalencia y Partición

Son conceptos duales

Sea \sim una relación de equivalencia en un conjunto A, entonces las clases de equivalecia determinan una partición de A

Sea $P_1, P_2, ...$ una partición de A, entonces la relación definida mediante $a \sim b$ si y sólo si existe k tal que $a, b \in P_k$ es una relación de equivalecia sobre A

Relación de Orden Parcial

Una **relación de orden parcial** *R* sobre un conjunto *A* es una relación que satisface las propiedades de **reflexividad**, **antisimetría** y **transitividad**

Notación: $a \le b$ en lugar de $(a, b) \in R$

Ejemplos:

- Si a y b son números, entonces a ≤ b denota la relación de orden usual sobre R (o Z), salvo que se diga explícitamente otra cosa.
- 2 $a \le b$ si y sólo si a divide a b sobre \mathbb{N} , (se puede usar a|b)
- **3** $X \leq Y$ si y sólo si $X \subseteq Y$ sobre $\mathcal{P}(A)$