Relación de Orden Parcial

Una **relación de orden parcial** *R* sobre un conjunto *A* es una relación que satisface las propiedades de **reflexividad**, **antisimetría** y **transitividad**

Notación: $a \le b$ en lugar de $(a, b) \in R$

Relación de Orden Parcial

Ejemplos:

- Relación de orden usual sobre \mathbb{R} (o \mathbb{Z}): Si a y b son números, entonces $a \leq b$ refleja la relación de orden dada por la representación geométrica de la recta, salvo que se diga explícitamente otra cosa.
- 2 La relación definida por $a \le b$ si y sólo si a divide a b (sobre \mathbb{N}) es una relación de orden. También utilizamos a|b.
- 3 $X \leq Y$ si y sólo si $X \subseteq Y$ (sobre $\mathcal{P}(A)$) es una relación de orden

Diagramas de Hasse

Definición de la relación cubrimiento

Sea A un conjunto $y \le un$ orden parcial sobre A. Sean $a, b \in A$ elementos distintos. Decimos que b cubre a a si $a \le b$ y no existe c distinto de a y b tal que $a \le c$ y $c \le b$.

Definición de Diagrama de Hasse

Consiste de puntos llamados **vértices** que representan los elementos del conjunto y de **arcos** o **segmentos ascendentes** que unen pares de vértices de la siguiente manera:

a está conectado con b mediante un arco ascendente si y sólo si b cubre a a.

Conjunto Parcialmente Ordenado (CPO o POSET)

Es un par (P, \leq) donde P es un conjunto y \leq es un orden parcial sobre P

Ejemplos:

- \bullet (\mathbb{R}, \leq) es un POSET
- $(\mathbb{N}, |)$ es un POSET
- **3** ({1,2,3,5,6,8},|) es un POSET
- $(\mathcal{P}(\mathbb{N}),\subseteq)$ es un POSET

Máximos y Mínimos

$$(P, \leq)$$
 un POSET

- a es mínimo de P si para todo x en P se tiene $a \le x$
- a es máximo de P si para todo x en P se tiene $x \le a$

¿Cuáles de los siguientes tienen máximo y/o mínimo?

- **①** (ℕ, ≤)
- **2** $([0,1), \leq)$
- **(**{2, 4, 6, 12, 16}, |)
- **4** ({2, 4, 6, 12}, |)
- **3** $(\{\{c\},\{a,b\},\{a,b,c\}\},\subseteq)$

Maximales y Minimales

$$(P, \leq)$$
 un POSET

- a es minimal de P si para todo x en P,
 x ≤ a implica que x = a
- a es maximal de P si para todo x en P,
 a ≤ x implica que a = x

¿Cuáles de los siguientes tienen maximales y/o minimales?

- $\mathbf{0}$ (\mathbb{N}, \leq)
- $([0,1),\leq)$
- $(\{2,4,6,12,16\},|)$
- **4** ({2, 4, 6, 12}, |)
- **5** $(\{\{c\}, \{a, b\}, \{a, b, c\}\}, \subseteq)$

Orden Total o Cadena

Un *orden total* sobre un conjunto P es un orden parcial \leq sobre P que satisface la **ley de dicotomía**:

para todo
$$a, b \in P$$
, $a \le b$ o $b \le a$.

Algunos ejemplos de órdenes totales:

- El orden < en \mathbb{R}
- El orden lexicográfico en un diccionario.

Supremos e Ínfimos

Sea (P, \leq) un poset y sea $S \subseteq P$.

- **1** $a \in P$ se dice *cota superior* de S si para todo $b \in S$ ocurre que $b \le a$.
- ② $a \in P$ se dice *cota inferior* de S si para todo $b \in S$ ocurre que $a \le b$.
- a ∈ P se dice supremo de S si a es una cota superior de S
 y para toda cota superior b de S se cumple que a ≤ b.
- **3** $a \in P$ se dice *infimo* de S si a es una cota inferior de S y para toda cota inferior b de S se cumple que $b \le a$.

Isomorfismo de POSETS

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Diremos que f es un **isomorfismo** si f es biyectiva y para todo $x, y \in P$, se cumple que

 $x \le y$ si y sólo si $f(x) \le' f(y)$

Propiedad Fundamental de los Isomorfismos

Lema

Sean (P, \leq) y (Q, \leq') posets. Sea $f: P \to Q$ un isomorfismo.

- Para cada $S \subseteq P$, se tiene que existe $\sup(S)$ si y sólo si existe $\sup(f(S))$ y en el caso de que existan tales elementos se tiene que $f(\sup(S)) = \sup(f(S))$.
- 2 Para cada $S \subseteq P$, se tiene que existe $\inf(S)$ si y sólo si existe $\inf(f(S))$ y en el caso de que existan tales elementos se tiene que $f(\inf(S)) = \inf(f(S))$.