Supremos e Ínfimos

Sea (P, \leq) un poset y sea $S \subseteq P$.

- **1** $a \in P$ se dice *cota superior* de S si para todo $b \in S$ ocurre que $b \le a$.
- ② $a \in P$ se dice *cota inferior* de S si para todo $b \in S$ ocurre que $a \le b$.
- a ∈ P se dice supremo de S si a es una cota superior de S
 y para toda cota superior b de S se cumple que a ≤ b.
- 4 $a \in P$ se dice *infimo* de S si a es una cota inferior de S y para toda cota inferior b de S se cumple que $b \le a$.

Posets Rerticulados

Diremos que un poset (L, \leq) es un poset **reticulado** si para todo $a, b \in L$, existen $\sup(\{a, b\})$ e $\inf(\{a, b\})$.

Notación: $a \lor b = \sup\{a, b\}$ $a \land b = \inf\{a, b\}$

¿Cuáles de los siguientes posets son reticulados?

- (N, ≤)
- **●** ([0,1),≤)
- \bullet ({2,4,6,12,24},|)
- \bullet ({2,4,5,6,12},|)
- $(\mathcal{P}(\{a,b,c\},\subseteq))$

Reticulado de divisores de n

$$D_n = \{k \in \mathbb{N} : k|n\}$$

 $(D_n, |)$ es un reticulado

$$x \lor y = mcm(x, y)$$

$$x \wedge y = mcd(x, y)$$

1 es mínimo de D_n

n es el máximo de D_n

Reticulado de partes de X

 $(\mathcal{P}(X),\subseteq)$ es un reticulado

$$A \lor B = A \cup B$$

$$A \wedge B = A \cap B$$

 \emptyset es mínimo de $\mathcal{P}(X)$

X es el máximo de $\mathcal{P}(X)$

Propiedades básicas del supremo e ínfimo

Dado un reticulado (L, \leq) , y elementos $x, y, z, w \in L$, se cumplen las siguientes propiedades:

- $x \land y \leq x$
- ley de compatibilidad

$$x \le z$$
 e $y \le w$ implican $x \lor y \le z \lor w$, $x \land y \le z \land w$

Propiedades fundamentales del supremo e ínfimo

leyes de idempotencia:

$$X \lor X = X \land X = X$$

2 leyes conmutativas:

$$x \lor y = y \lor x, \qquad x \land y = y \land x$$

leyes de absorción:

$$x \lor (x \land y) = x, \qquad x \land (x \lor y) = x$$

leyes asociativas:

$$(x \lor y) \lor z = x \lor (y \lor z), \qquad (x \land y) \land z = x \land (y \land z)$$

Noción de Estructura Algebraica

Estructura Algebraica = conjunto con operaciones

Por ejemplo, los números enteros dotados de las operaciones suma, producto y las constantes 0 y 1 tienen estructura de **Anillo**.

Se denota: $(\mathbb{Z}, +..., 0, 1)$

Lo importante de la operación no es el nombre, sino el **tipo**. Por ejemplo el tipo de + es $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$

La estructura está dada no sólo por las operaciones, sino también por las propiedades que las mismas satisfacen, en este caso, la asociatividad, la distributividad del producto respecto de la suma, etc.

Reticulado como Estructura Algebraica

Es una tupla (L, \vee, \wedge) que satisface las propiedades:

- **1** Idempotencia: $x \lor x = x \land x = x$
- 2 Conmutatividad: $x \lor y = y \lor x$ $x \land y = y \land x$
- **3** Absorción: $x \lor (x \land y) = x$ $x \land (x \lor y) = x$
- Asociatividad:

$$(x \lor y) \lor z = x \lor (y \lor z)$$
 $(x \land y) \land z = x \land (y \land z)$

Ejemplos

- No toda estructura del tipo (L, \vee, \wedge) es un reticulado. Por ejemplo la estructura $(\mathbb{R}, +, \cdot)$ donde + y \cdot son las operaciones de suma y producto usuales de \mathbb{R} no es un reticulado.
- ② Por las propiedades fundamentales de supremo e ínfimo, un poset reticulado (L, \leq) puede "mutar" para convertirse en un reticulado (como estructura algebraica): tomamos la estructura (L, \vee, \wedge) donde \vee y \wedge representan al supremo y al ínfimo resp.

Existencia dual de un Reticulado

Sea (L, \vee, \wedge) un reticulado (como estructura algebraica). La relación binaria definida por:

$$x \le y \iff x \lor y = y$$

es un orden parcial sobre *L* para el cual se cumple:

$$x \lor y = \sup\{x, y\}, \qquad x \land y = \inf\{x, y\}$$

Ejemplos

Si X es un conjunto arbitrario, entonces (P(X), ∪, ∩) es un reticulado. La relación binaria inducida por ∪ y ∩ es precisamente la inclusión, pues

$$A = A \cup B \iff B \subseteq A$$

② Si $n \in \mathbb{N}$ entonces (D_n, mcm, mcd) es un reticulado. La relación binaria inducida es la de divisibilidad, pues

$$mcm(x, y) = y \iff x|y$$

Isomorfismo de reticulados

El concepto de Estructura Algebraica tiene asociado su propia noción de isomorfismo: dos estructuras son isomorfas si existe una biyección que preserva las operaciones.

Definición: Isomorfismo de reticulados

Sean $\langle L, \vee, \wedge \rangle$ y $\langle L', \vee, \wedge' \rangle$ reticulados. Una función $F: L \to L'$ se dice un *isomorfismo* de reticulados si F es biyectiva y para todo $x, y \in L$ se cumple que

$$F(x \lor y) = F(x) \lor' F(y)$$

$$F(x \wedge y) = F(x) \wedge' F(y).$$

Comparación de las nociones de Isomorfismo

Isomorfismo como posets:

$$x \leq y \iff F(x) \leq' F(y)$$

Isomorfismo como estructura algebraica:

$$F(x \vee y) = F(x) \vee' F(y)$$

$$F(x \wedge y) = F(x) \wedge' F(y)$$

Equivalencia de las nociones de Isomorfismo

Teorema:

Sean $\langle L, \vee, \wedge \rangle$ y $\langle L', \vee, \wedge' \rangle$ reticulados y sean $(L \leq)$ y (L', \leq') los posets asociados. Entonces una función $F: L \mapsto L'$ es un isomorfismo entre las estructuras $\langle L, \vee, \wedge \rangle$ y $\langle L', \vee, \wedge' \rangle$ si y sólo si lo es entre los posets (L, \leq) y (L', \leq') .