La propiedad de Distributividad

Lema:

Sea *L* un reticulado; entonces son equivalentes:

- Para todo x, y, $z \in L$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$
- Para todo x, y, $z \in L$, $x \lor (y \land z) = (x \lor y) \land (x \lor z)$

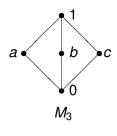
Reticulados Distributivos

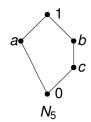
Sea L un reticulado, entonces L se dice **distributivo** si satisface alguna de las propiedades del Lema.

Ejemplos:

- N con el orden usual es distributivo
- [0,1) con el orden usual es distributivo
- O_n es distributivo

Casos paradigmáticos de no distributividad





$$c \lor (b \land a) \neq (c \lor b) \land (c \lor a)$$

$$b \wedge (c \vee a) \neq (b \wedge c) \vee (b \wedge a)$$

Distributividad implica compleménto único

Lema:

Si *L* es un reticulado acotado y distributivo, entonces todo elemento tiene a **lo sumo** un complemento.

Notar que puede **no haber** complementos, por ejemplo

Criterio para analizar distributividad

Lema:

Un reticulado es distributivo si y sólo si no contiene subreticulados isomorfos a M_3 ni N_5 .

Resumen de criterios para analizar distributividad

Para comprobar la distributividad de L:

• Ver que L es subreticulado de algún reticulado de la forma $\mathcal{P}(X)$ o \mathcal{D}_n .

Para refutar la distributividad de L:

- Ver que existe un elemento con más de un complemento.
- Ver que contiene como subreticulados a M₃ o N₅.

Álgebras de Boole

Es una estructura del tipo $\langle B, \vee, \wedge, ', 0, 1 \rangle$, donde B es un conjunto no vacío, y además satisface:

- \bigcirc $\langle B, \vee, \wedge \rangle$ es un reticulado distributivo
- 2 Para todo $x \in B$ se tiene

$$0 \le x$$
 $x \le 1$

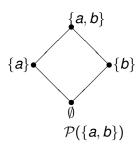
3 para cada $x \in L$, se tiene que

$$x \vee x' = 1, \qquad x \wedge x' = 0$$

Álgebra de Boole de conjuntos

Sea X un conjunto.

Entonces $\langle \mathcal{P}(X), \cup, \cap, {}^{c}, \emptyset, X \rangle$ es un álgebra de Boole,



Leyes de de Morgan

Sea $\langle B, \vee, \wedge, ', 0, 1 \rangle$ un álgebra de Boole, entonces se cumple:

$$(x \lor y)' = x' \land y'$$
$$(x \land y)' = x' \lor y'$$

Isomorfismo de Álgebras de Boole

Sean $\langle B, \vee, \wedge, ', 0^B, 1^B \rangle$ y $\langle B_1, \vee_1, \wedge_1, ^*, 0^{B_1}, 1^{B_1} \rangle$ Álgebras de Boole. Una función $F: B \to B_1$ se dice un *isomorfismo* si F es biyectiva y para todo $x, y \in L$ se cumple que

$$F(x \lor y) = F(x) \lor_{1} F(y)$$

$$F(x \land y) = F(x) \land_{1} F(y)$$

$$F(x') = (F(x))^{*}$$

$$F(0^{B}) = 0^{B_{1}}$$

$$F(1^{B}) = 1^{B_{1}}$$

Comparación de las nociones de Isomorfismo

Isomorfismo como posets:

$$x \le y \iff F(x) \le' F(y)$$

Isomorfismo como estructura algebraica:

$$F(x \lor y) = F(x) \lor_{1} F(y)$$

$$F(x \land y) = F(x) \land_{1} F(y)$$

$$F(x') = (F(x))^{*}$$

$$F(0^{B}) = 0^{B_{1}}$$

$$F(1^{B}) = 1^{B_{1}}$$

Equivalencia de las nociones de Isomorfismo

Teorema:

Sean $\langle B, \vee, \wedge,', 0^B, 1^B \rangle$ y $\langle B_1, \vee_1, \wedge_1,^*, 0^{B_1}, 1^{B_1} \rangle$ Álgebras de Boole y sean $(B \leq)$ y (B_1, \leq_1) los posets asociados. Entonces una función $F: B \mapsto B_1$ es un isomorfismo entre las estructuras $\langle B, \vee, \wedge,', ^B, 1^B \rangle$ y $\langle B_1, \vee_1, \wedge_1,^*, 0^{B_1}, 1^{B_1} \rangle$ si y sólo si lo es entre los posets (B, \leq) y (B_1, \leq_1) .

Cuestión a resolver

Todas las Álgebras de Boole vistas (aunque estén camufladas como D_6 o D_{30}) son en definitiva (vía isomorfismo) de la forma $\mathcal{P}(X)$.

O sea, son álgebras de conjuntos.

¿Será cierto que todas las Álgebras de Boole son álgebras de conjuntos?

(En tal caso estaríamos en presencia de una abstracción "poco abstracta")

Próximo objetivo: Teorema de Representación

Toda Álgebra de Boole finita B es un álgebra de conjuntos. O sea, existe X tal que

$$B \cong \mathcal{P}(X)$$

Pregunta inicial:

¿Qué objetos juegan el rol de elementos de X?

Átomos

Sea *B* un álgebra de Boole (basta con que sea reticulado).

Un elemento $a \in B$ será llamado **átomo** si a cubre a 0.

Notación: At(B) es el conjunto de todos los átomos de B.

Por ejemplo:

- **1** En $\mathcal{P}(X)$, los átomos son los conjuntos unitarios.
- 2 Los átomos de D_{12} son 2 y 3.

Hay suficiente cantidad de átomos

Lema A

Sea *B* un álgebra de Boole finita. Para todo $x \in B$ distinto de 0 existe $a \in At(B)$ tal que $a \le x$.

Lema B Sea *B* un álgebra de Boole finita, y sean $x, y \in B$ tales que $x \nleq y$. Entonces existe $a \in At(B)$ tal que $a \le x$ y $a \nleq y$.