Cuestión a resolver

Todas las Álgebras de Boole vistas (aunque estén camufladas como D_6 o D_{30}) son en definitiva (vía isomorfismo) de la forma $\mathcal{P}(X)$. O sea, son **álgebras de conjuntos**.

Próximo objetivo: Teorema de Representación Toda Álgebra de Boole **finita** *B* es un **álgebra de conjuntos**. O sea, existe *X* tal que

$$B \cong \mathcal{P}(X)$$

Pregunta inicial:

¿Qué objetos juegan el rol de elementos de X?

Átomos

Sea *B* un álgebra de Boole (basta con que sea reticulado).

Un elemento $a \in B$ será llamado **átomo** si a cubre a 0.

Notación: At(B) es el conjunto de todos los átomos de B.

Por ejemplo:

- **1** En $\mathcal{P}(X)$, los átomos son los conjuntos unitarios.
- 2 Los átomos de D_n son los factores primos de la descomposición de n.

Hay suficiente cantidad de átomos

Lema A

Sea *B* un álgebra de Boole finita. Para todo $x \in B$ distinto de 0 existe $a \in At(B)$ tal que $a \le x$.

Lema B Sea *B* un álgebra de Boole finita, y sean $x, y \in B$ tales que $x \nleq y$. Entonces existe $a \in At(B)$ tal que $a \le x$ y $a \nleq y$.

Hay suficiente cantidad de átomos

Lema

Sea *B* un álgebra de Boole finita. Entonces todo elemento de *B* se escribe de manera única como supremo de átomos.

O sea: para todo $x \in B$ se tiene:

- 2 si $A \subseteq At(B)$ y $x = \sup A$, entonces

$$A = \{a \in At(B) : a \le x\}$$

Teorema de Representación

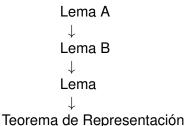
Sea $\langle B, \vee, \wedge, ', 0, 1 \rangle$ un álgebra de Boole finita, y sea X = At(B). La función

$$F: B \longrightarrow \mathcal{P}(X)$$

 $x \longrightarrow \{a \in X : a \leq x\}$

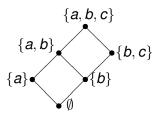
es un isomorfismo entre $\langle B, \vee, \wedge, ', 0, 1 \rangle$ y $\langle \mathcal{P}(X), \cup, \cap, ^c, \emptyset, X \rangle$.

Esquema de la Prueba del TR



Problema de la representación de un reticulado

Las Álgebras de Boole finitas son álgebras de conjuntos. ¿Serán los reticulados finitos reticulados de conjuntos?



Conjuntos decrecientes de un poset

Sea (P, \leq) un poset

Diremos que un subconjunto $D \subseteq P$ es **decreciente** si para todo $x, z \in P$ se tiene que:

O sea, un conjunto decreciente satisface que si un elemento se encuentra en el conjunto, entonces todos los elementos menores también están.

Reticulado de conjuntos decrecientes de un poset

Denotaremos mediante $\mathcal{D}(P)$ a la familia de todos los subconjuntos decrecientes de P:

$$\mathcal{D}(P) = \{D \subseteq P : D \text{ es decreciente}\}.$$

Entonces

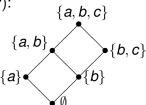
$$\langle \mathcal{D}(P), \cup, \cap, \emptyset, P \rangle$$
.

es un reticulado es distributivo

Ejemplo: sea P el poset

Los conj. decrecientes son: \emptyset , $\{a\}$, $\{b\}$, $\{a,b\}$, $\{b,c\}$, $\{a,b,c\}$

Forman el reticulado $\mathcal{D}(P)$:



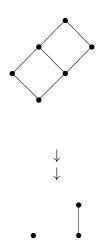
Problema de la representación de un reticulado

¿Será cierto que para todo reticulado distributivo L existe un poset P tal que

$$L \cong \mathcal{D}(P)$$

Dado L un reticulado, ¿cómo obtengo el P tal que $L \cong \mathcal{D}(P)$?

¿Cómo se obtiene P desde L?



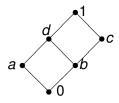
Elementos Irreducibles

Sea L un reticulado acotado. Un elemento $x \in L$ será llamado **irreducible** si

- ② si $x = y \lor z$, entonces x = y o x = z, para todo $y, z \in L$.

La segunda condición es equivalente a decir que x no se puede obtener como supremo de dos elementos distintos de x.

Ejemplos de Elementos Irreducibles



Elementos irreducibles: a, b, c

Forman el poset:

Poset de Elementos Irreducibles

Definición: $Irr(L) = \{i \in L : i \text{ es irreducible}\}$

Próximo objetivo: Demostrar que todo reticulado distributivo finito L es isomorfo a $\mathcal{D}(P)$, donde el poset (P, \leq) asociado al reticulado L es

$$(Irr(L), \leq)$$

donde \leq es el orden heredado de L.

Hay suficiente cantidad de Irreducibles

Lema A

Sea L un reticulado finito, y sean $x, y \in L$ tales que $x \nleq y$. Entonces existe $i \in Irr(L)$ tal que $i \leq x$ e $i \nleq y$.

Hay suficiente cantidad de Irreducibles

Lema

Sea L un reticulado distributivo finito. Entonces para todo $x \in L$ se tiene:

- 2 si $D \subseteq Irr(L)$ es decreciente, y $x = \sup D$, entonces

$$D = \{i \in Irr(L) : i \leq x\}$$

Teorema de Birkhoff

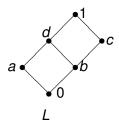
Sea L un reticulado acotado distributivo finito, y sea P = Irr(L). Entonces la función

$$F: L \longrightarrow \mathcal{D}(P)$$

$$x \longrightarrow \{y \in P : y \le x\}$$

es un isomorfismo entre L y $\mathcal{D}(P)$.

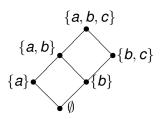
El ejemplo D_{12} completo



$$Irr(L) = \{a, b, c\}$$

Forman el poset:

$$\mathcal{D}(P) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$$



La correspondencia F dada por el Teorema es:

$$egin{aligned} 0 &
ightarrow \emptyset & a &
ightarrow \{a\} \ b &
ightarrow \{b, c\} & d &
ightarrow \{a, b\} \ c &
ightarrow \{b, c\} & 1 &
ightarrow \{a, b, d\} \end{aligned}$$

Nuevo criterio de análisis de distributividad

Se puede observar que la única intervención de la distributividad en la prueba del Teorema de Birkhoff es para probar que F es sobre.

Criterio de análisis de distributividad

Un reticulado finito es ditributivo si y sólo si $|L| = |\mathcal{D}(Irr(L))|$

Volviendo a las Álgebras de Boole

Vale:

$$At(B) = Irr(B)$$

Entonces, si *L* es un reticulado acotado distributivo finito, se tiene:

L es álgebra de Boole si y sólo si Irr(L) = At(L).