Introducción a la Lógica y la Computación

Parte I: Estructuras Ordenadas

Clase del 21 de agosto de 2015

Estructura Algebraica

Esta formada por un conjunto con operaciones

Por ejemplo, los números enteros dotados de las operaciones suma, producto y las constantes 0 y 1 tienen estructura de **Anillo**.

Se denota: $(\mathbb{Z}, +.\cdot, 0, 1)$

Estructura Algebraica

Esta formada por un conjunto con operaciones

Por ejemplo, los números enteros dotados de las operaciones suma, producto y las constantes 0 y 1 tienen estructura de **Anillo**.

Se denota: $(\mathbb{Z}, +.., 0, 1)$

A una estructura algebraica la definen tanto el **tipo de operaciones**, como las **propiedade**s que las mismas satisfacen.

Reticulado como Estructura Algebraica

Es una tupla (L, \vee, \wedge) que satisface las propiedades:

- **1** Idempotencia: $x \lor x = x \land x = x$
- 2 Conmutatividad: $x \lor y = y \lor x$ $x \land y = y \land x$
- **3** Absorción: $x \lor (x \land y) = x$ $x \land (x \lor y) = x$
- Asociatividad:

$$(x \lor y) \lor z = x \lor (y \lor z)$$
 $(x \land y) \land z = x \land (y \land z)$

El reticulado como EA se define como TAD

TAD Reticulado

Operaciones:

$$(\vee)$$
: $el \times el \rightarrow el$

$$(\land): el \times el \rightarrow el$$

Ecuaciones:

$$x \lor x = x$$

 $x \lor y = y \lor x$
 $x \lor (x \land y) = x$
 $(x \lor y) \lor z = x \lor (y \lor z)$
 $x \land x = x$
:

Existencia dual de un Reticulado

 Dado un CPO (P, ≤), entonces la estructura algebraica (L, ∨, ∧) satisface las propiedades de idempotencia, conmutatividad, absorción y asociatividad.

Existencia dual de un Reticulado

- Dado un CPO (P, ≤), entonces la estructura algebraica (L, ∨, ∧) satisface las propiedades de idempotencia, conmutatividad, absorción y asociatividad.
- Sea (L, ∨, ∧) una estructura algebraica que satisface las propiedades de idempotencia, conmutatividad, absorción y asociatividad, entonces la relación binaria definida por:

$$x \le y \iff x \lor y = y$$

es un orden parcial sobre L.

Existencia dual de un Reticulado

- Dado un CPO (P, ≤), entonces la estructura algebraica (L, ∨, ∧) satisface las propiedades de idempotencia, conmutatividad, absorción y asociatividad.
- Sea (L, ∨, ∧) una estructura algebraica que satisface las propiedades de idempotencia, conmutatividad, absorción y asociatividad, entonces la relación binaria definida por:

$$x \le y \iff x \lor y = y$$

es un orden parcial sobre L.

Notación: A (L, \vee, \wedge) también le llamamos **reticulado** (visto como estructura algebraica)

Las construcciones son recíprocas

Lema

Sea (L, \vee, \wedge) un reticulado (como estructura algebraica). La relación binaria definida por:

$$x \leq y \iff x \vee y = y$$

es un orden parcial sobre *L* para el cual se cumple:

$$x \lor y = \sup\{x, y\}, \qquad x \land y = \inf\{x, y\}$$

Las construcciones son recíprocas

o sea,

El CPO (L, \leq) que se obtiene de (L, \vee, \wedge) definiendo:

$$x \le y \iff x \lor y = y$$

es un reticulado en el cual las operaciones supremo e ínfimo coinciden con \vee y \wedge resp.

Ejemplos

• Si X es un conjunto arbitrario, entonces $(\mathcal{P}(X), \cup, \cap)$ es un reticulado. La relación binaria inducida por \cup y \cap es precisamente la inclusión, pues

$$A = A \cup B \iff B \subseteq A$$

Ejemplos

③ Si X es un conjunto arbitrario, entonces $(\mathcal{P}(X), \cup, \cap)$ es un reticulado. La relación binaria inducida por \cup y \cap es precisamente la inclusión, pues

$$A = A \cup B \iff B \subseteq A$$

② Si $n \in \mathbb{N}$ entonces (D_n, mcm, mcd) es un reticulado. La relación binaria inducida es la de divisibilidad, pues

$$mcm(x, y) = y \iff x|y$$

Isomorfismo de reticulados

El concepto de Estructura Algebraica tiene asociado su propia noción de isomorfismo: dos estructuras son isomorfas si existe una biyección que preserva las operaciones.

Isomorfismo de reticulados

El concepto de Estructura Algebraica tiene asociado su propia noción de isomorfismo: dos estructuras son isomorfas si existe una biyección que preserva las operaciones.

Definición: Isomorfismo de reticulados

Sean $\langle L, \vee, \wedge \rangle$ y $\langle L', \vee, \wedge' \rangle$ reticulados. Una función $F: L \to L'$ se dice un *isomorfismo* de reticulados si F es biyectiva y para todo $x, y \in L$ se cumple que

$$F(x \vee y) = F(x) \vee' F(y)$$

$$F(x \wedge y) = F(x) \wedge' F(y).$$

Comparación de las nociones de Isomorfismo

Isomorfismo como posets:

$$x \le y \iff F(x) \le' F(y)$$

Comparación de las nociones de Isomorfismo

Isomorfismo como posets:

$$x \le y \iff F(x) \le' F(y)$$

Isomorfismo como estructura algebraica:

$$F(x \vee y) = F(x) \vee' F(y)$$

$$F(x \wedge y) = F(x) \wedge' F(y)$$

Equivalencia de las nociones de Isomorfismo

Teorema:

Sean $\langle L, \vee, \wedge \rangle$ y $\langle L', \vee, \wedge' \rangle$ reticulados y sean $(L \leq)$ y (L', \leq') los posets asociados. Entonces una función $F: L \mapsto L'$ es un isomorfismo entre las estructuras $\langle L, \vee, \wedge \rangle$ y $\langle L', \vee, \wedge' \rangle$ si y sólo si lo es entre los posets (L, \leq) y (L', \leq') .

Reticulados acotados

Sea L un reticulado. Consideramos L simultaneamente dotado de su estructura de poset (L, \leq) y de reticulado $\langle L, \vee, \wedge \rangle$.

Reticulados acotados

Sea L un reticulado. Consideramos L simultaneamente dotado de su estructura de poset (L, \leq) y de reticulado $\langle L, \vee, \wedge \rangle$.

Definición: L será acotado si tiene máximo y mínimo.

Reticulados acotados

Sea L un reticulado. Consideramos L simultaneamente dotado de su estructura de poset (L, \leq) y de reticulado $\langle L, \vee, \wedge \rangle$.

Definición: L será acotado si tiene máximo y mínimo.

Notación: Usamos

1^L para denotar al máximo

0^L para denotar al mínimo

Reticulados complementados

Sea L un reticulado y sea $x \in L$. Decimos que x es **complementado** si existe $y \in L$ tal que

$$x \lor y = 1^L \qquad x \land y = 0^L$$

Reticulados complementados

Sea L un reticulado y sea $x \in L$. Decimos que x es **complementado** si existe $y \in L$ tal que

$$x \lor y = 1^L \qquad x \land y = 0^L$$

L será un **reticulado complementado** si todos sus elementos tienen al menos 1 complemento.

Falla Estructural

El complemento no está determinado por la estructura de orden, como lo están las operaciones supremo e ínfimo.

