Existencia dual de un Reticulado

- Dado un CPO reticulado (L, ≤), entonces la estructura algebraica (L, ∨, ∧) satisface las propiedades de idempotencia, conmutatividad, absorción y asociatividad.
- Sea (L, ∨, ∧) una estructura algebraica que satisface las propiedades de idempotencia, conmutatividad, absorción y asociatividad, entonces la relación binaria definida por:

$$x \le y \iff x \lor y = y$$

es un orden parcial sobre L.

Las construcciones son recíprocas

Lema

Sea (L, \vee, \wedge) un reticulado (como estructura algebraica). La relación binaria definida por:

$$x \leq y \iff x \vee y = y$$

es un orden parcial sobre *L* para el cual se cumple:

$$x \lor y = \sup\{x, y\}, \qquad x \land y = \inf\{x, y\}$$

Las construcciones son recíprocas

o sea,

El CPO (L, \leq) que se obtiene de (L, \vee, \wedge) definiendo:

$$x \le y \iff x \lor y = y$$

es un reticulado en el cual las operaciones supremo e ínfimo coinciden con \vee y \wedge resp.

Ejemplos

Si X es un conjunto arbitrario, entonces (P(X), ∨, ∧) es un reticulado. La relación binaria inducida por ∪ y ∩ es precisamente la inclusión, y

$$A \lor B = A \cup B$$
 $A \land B = A \cap B$

② Si $n \in \mathbb{N}$ entonces (D_n, \vee, \wedge) es un reticulado. La relación binaria inducida es la de divisibilidad,

$$x \lor y = mcm(x, y)$$
 $x \land y = mcd(x, y)$

Notación

Cuando escibimos

"sea L un reticulado"

consideramos L simultaneamente dotado de su estructura de poset (L, \leq) y de estructura algebraica $\langle L, \vee, \wedge \rangle$.

Reticulados acotados

Definición: L será acotado si tiene máximo y mínimo.

Notación: Usamos

1^L para denotar al máximo

0^L para denotar al mínimo

Reticulados complementados

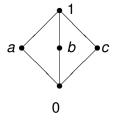
Sea L un reticulado acotado y sea $x \in L$. Decimos que x es **complementado** si existe $y \in L$ tal que

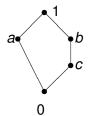
$$x \lor y = 1^L \qquad x \land y = 0^L$$

L será un **reticulado complementado** si todos sus elementos tienen al menos 1 complemento.

Falla Estructural

El complemento no está determinado por la estructura de orden, como lo están las operaciones supremo e ínfimo.





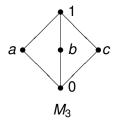
Propiedad de distributividad

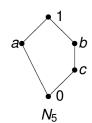
$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

$$(x \wedge y) \vee (x \wedge z) = x \wedge (y \vee z)$$

¿Valen en todo reticulado?

Casos paradigmáticos de no distributividad





$$c \lor (b \land a) \neq (c \lor b) \land (c \lor a)$$

$$b \wedge (c \vee a) \neq (b \wedge c) \vee (b \wedge a)$$

Desigualdades distributivas

$$x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z)$$

$$(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z)$$

La propiedad de Distributividad

Lema: Sea *L* un reticulado; entonces son equivalentes:

• Para todo x, y, $z \in L$,

$$X \wedge (y \vee z) = (X \wedge y) \vee (X \wedge z)$$

2 Para todo $x, y, z \in L$,

$$X \vee (y \wedge z) = (X \vee y) \wedge (X \vee z)$$

Notar que hay reticulados que no satisfacen ni 1 ni 2.

Distributividad implica complemento único

Lema:

Si *L* es un reticulado acotado y distributivo, entonces todo elemento tiene a **lo sumo** un complemento.

Notar que puede **no haber** complementos, por ejemplo

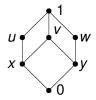
Noción de subreticulado

Sea L un reticulado. Un subconjunto $M \subseteq L$ será llamado subreticulado de L si

- ② para todo $x, y \in M$, se tiene que $x \vee y, x \wedge y \in M$.

Por ejemplo:

Considere el reticulado



 $\{0, x, y, 1\}$ no es subreticulado $\{0, u, w, 1\}$ es subreticulado

Un subreticulado es un reticulado

Notar que *M* dotado de las operaciones (y/o el orden) heredadas de *L* es en sí mismo un reticulado.

 $\{0, u, w, 1\}$ es el subreticulado

Noción de subreticulado II

Sean S y L dos reticulados.

Se suele decir que *S* es subreticulado de *L* cuando en realidad *S* es isomorfo a un subreticulado de *L*

Por ejemplo,

- $\mathcal{P}(\{a,b\})$ es subreticulado de D_{12}
- D_{12} es subreticulado de $\mathcal{P}(\{a,b,c\})$