Relaciones Conjuntos Parcialmente Ordenados Reticulados y Álgebras de Boole Teoremas de representación

Introducción a la Lógica y la Computación

Parte I: Estructuras Ordenadas

Clase del 29 de agosto de 2014

Álgebras de Boole

Es una estructura del tipo $\langle B, \vee, \wedge, ', 0, 1 \rangle$, donde B es un conjunto no vacío, y además satisface:

- \bigcirc $\langle B, \vee, \wedge \rangle$ es un reticulado distributivo
- 2 Para todo $x \in B$ se tiene

$$0 \le x$$
 $x \le 1$

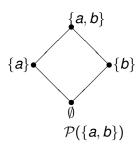
3 para cada $x \in L$, se tiene que

$$x \vee x' = 1, \qquad x \wedge x' = 0$$

Álgebra de Boole de conjuntos

Sea X un conjunto.

Entonces $\langle \mathcal{P}(X), \cup, \cap, {}^{c}, \emptyset, X \rangle$ es un álgebra de Boole,



Leyes de de Morgan

Sea $\langle B, \vee, \wedge, ', 0, 1 \rangle$ un álgebra de Boole, entonces se cumple:

$$(x \lor y)' = x' \land y'$$
$$(x \land y)' = x' \lor y'$$

Isomorfismo de Álgebras de Boole

Sean $\langle B, \vee, \wedge, ', 0^B, 1^B \rangle$ y $\langle B', \vee, \wedge, '', 0^{B'}, 1^{B'} \rangle$ Álgebras de Boole. Una función $F: B \to B'$ se dice un *isomorfismo* si F es biyectiva y para todo $x, y \in L$ se cumple que

$$F(x \vee y) = F(x) \vee' F(y)$$

$$F(x \wedge y) = F(x) \wedge' F(y)$$

Isomorfismo de Álgebras de Boole

Sean $\langle B, \vee, \wedge, ', 0^B, 1^B \rangle$ y $\langle B', \vee, \wedge, '', 0^{B'}, 1^{B'} \rangle$ Álgebras de Boole. Una función $F: B \to B'$ se dice un *isomorfismo* si F es biyectiva y para todo $x, y \in L$ se cumple que

$$F(x \lor y) = F(x) \lor' F(y)$$
$$F(x \land y) = F(x) \land' F(y)$$
$$F(x') = (F(x))''$$

Isomorfismo de Álgebras de Boole

Sean $\langle B, \vee, \wedge, ', 0^B, 1^B \rangle$ y $\langle B', \vee, \wedge, '', 0^{B'}, 1^{B'} \rangle$ Álgebras de Boole. Una función $F: B \to B'$ se dice un *isomorfismo* si F es biyectiva y para todo $x, y \in L$ se cumple que

$$F(x \lor y) = F(x) \lor' F(y)$$

$$F(x \land y) = F(x) \land' F(y)$$

$$F(x') = (F(x))''$$

$$F(0^B) = 0^{B'}$$

$$F(1^B) = 1^{B'}$$

Comparación de las nociones de Isomorfismo

Isomorfismo como posets:

$$x \le y \iff F(x) \le' F(y)$$

Isomorfismo como estructura algebraica:

$$F(x \lor y) = F(x) \lor' F(y)$$

$$F(x \land y) = F(x) \land' F(y)$$

$$F(x') = (F(x))''$$

$$F(0^B) = 0^{B'}$$

$$F(1^B) = 1^{B'}$$

Equivalencia de las nociones de Isomorfismo

Teorema:

Sean $\langle B, \vee, \wedge,', 0^B, 1^B \rangle$ y $\langle B', \vee, \wedge,'', 0^{B'}, 1^{B'} \rangle$ Álgebras de Boole y sean $(B \leq)$ y (B', \leq') los posets asociados. Entonces una función $F: B \mapsto B'$ es un isomorfismo entre las estructuras $\langle B, \vee, \wedge,', ^B, 1^B \rangle$ y $\langle L', \vee, \wedge','', 0^{B'}, 1^{B'} \rangle$ si y sólo si lo es entre los posets (B, \leq) y (B', \leq') .

Cuestión a resolver

Todas las Álgebras de Boole vistas (aunque estén camufladas como D_6 o D_{30}) son en definitiva (vía isomorfismo) de la forma $\mathcal{P}(X)$.

O sea, son álgebras de conjuntos.

Cuestión a resolver

Todas las Álgebras de Boole vistas (aunque estén camufladas como D_6 o D_{30}) son en definitiva (vía isomorfismo) de la forma $\mathcal{P}(X)$.

O sea, son álgebras de conjuntos.

¿Será cierto que todas las Álgebras de Boole son álgebras de conjuntos?

(En tal caso estaríamos en presencia de una abstracción "poco abstracta")

Próximo objetivo: Teorema de Representación

Toda Álgebra de Boole finita B es un álgebra de conjuntos. O sea, existe X tal que

$$B \cong \mathcal{P}(X)$$

Próximo objetivo: Teorema de Representación

Toda Álgebra de Boole finita B es un álgebra de conjuntos. O sea, existe X tal que

$$B \cong \mathcal{P}(X)$$

Pregunta inicial:

¿Qué objetos juegan el rol de elementos de X?

Sea *B* un álgebra de Boole (basta con que sea reticulado).

Un elemento $a \in B$ será llamado **átomo** si a cubre a 0.

Sea *B* un álgebra de Boole (basta con que sea reticulado).

Un elemento $a \in B$ será llamado **átomo** si a cubre a 0.

Notación: At(B) es el conjunto de todos los átomos de B.

Sea *B* un álgebra de Boole (basta con que sea reticulado).

Un elemento $a \in B$ será llamado **átomo** si a cubre a 0.

Notación: At(B) es el conjunto de todos los átomos de B.

Por ejemplo:

1 En $\mathcal{P}(X)$, los átomos son los conjuntos unitarios.

Sea *B* un álgebra de Boole (basta con que sea reticulado).

Un elemento $a \in B$ será llamado **átomo** si a cubre a 0.

Notación: At(B) es el conjunto de todos los átomos de B.

Por ejemplo:

- **1** En $\mathcal{P}(X)$, los átomos son los conjuntos unitarios.
- 2 Los átomos de D_{12} son 2 y 3.

Hay suficiente cantidad de átomos

Lema

Sea *B* un álgebra de Boole finita. Entonces todo elemento de *B* se escribe de manera única como supremo de átomos.

Hay suficiente cantidad de átomos

Lema

Sea *B* un álgebra de Boole finita. Entonces todo elemento de *B* se escribe de manera única como supremo de átomos.

O sea: para todo $x \in B$ se tiene:

Hay suficiente cantidad de átomos

Lema

Sea *B* un álgebra de Boole finita. Entonces todo elemento de *B* se escribe de manera única como supremo de átomos.

O sea: para todo $x \in B$ se tiene:

- 2 si $A \subseteq At(B)$ y $x = \sup A$, entonces

$$A = \{a \in At(B) : a \le x\}$$

Relaciones Conjuntos Parcialmente Ordenados Reticulados y Álgebras de Boole Teoremas de representación

Prueba del Lema

Lema A

Sea B un álgebra de Boole finita. Para todo $x \in B$ distinto de 0 existe $a \in At(B)$ tal que $a \le x$.

Prueba del Lema

Lema A

Sea *B* un álgebra de Boole finita. Para todo $x \in B$ distinto de 0 existe $a \in At(B)$ tal que $a \le x$.

Lema B Sea *B* un álgebra de Boole finita, y sean $x, y \in B$ tales que $x \nleq y$. Entonces existe $a \in At(B)$ tal que $a \le x$ y $a \nleq y$.

Teorema de Representación

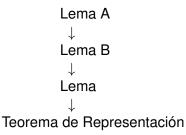
Sea $\langle B, \vee, \wedge, ', 0, 1 \rangle$ un álgebra de Boole finita, y sea X = At(B). La función

$$F: B \longrightarrow \mathcal{P}(X)$$

 $x \longrightarrow \{a \in X : a \leq x\}$

es un isomorfismo entre $\langle B, \vee, \wedge, ', 0, 1 \rangle$ y $\langle \mathcal{P}(X), \cup, \cap, ^c, \emptyset, X \rangle$.

Esquema de la Prueba del TR



TR no vale para el caso infinito

Existe un álgebra de Boole **infinita** que no es isomorfa $\mathcal{P}(X)$, para ningún X.

Construiremos un Álgebra de Boole \mathcal{B} , y usaremos un argumento sobre su cardinalidad para probar que no es isomorfa a ningún álgebra de la forma $\mathcal{P}(X)$.

1 X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y $\{1, 2, ..., n\}$.

- **1** X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y {1, 2, ..., n}.
- Si X no es finito, decimos que X es infinito.

- **1** X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y {1, 2, ..., n}.
- Si X no es finito, decimos que X es infinito.
- ③ X tiene cardinal **infinito numerable** si se puede encontrar una biyección entre X y \mathbb{N} . En tal caso se dice que X tiene cardinal \aleph_0 .

- **1** X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y {1, 2, ..., n}.
- Si X no es finito, decimos que X es infinito.
- ③ X tiene cardinal **infinito numerable** si se puede encontrar una biyección entre X y \mathbb{N} . En tal caso se dice que X tiene cardinal \aleph_0 .
- Si X es infinito y no se puede encontrar tal biyección, decimos que X es infinito no numerable.

- **1** X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y $\{1, 2, ..., n\}$.
- ② Si X no es finito, decimos que X es **infinito**.
- ③ X tiene cardinal **infinito numerable** si se puede encontrar una biyección entre X y \mathbb{N} . En tal caso se dice que X tiene cardinal \aleph_0 .
- Si X es infinito y no se puede encontrar tal biyección, decimos que X es infinito no numerable.
- **5** Ejemplos de conjuntos infinitos no numerables: \mathbb{R} , $\mathcal{P}(\mathbb{N})$. Ambos tienen cardinal \aleph_1 .

Los cardinales tiene un orden

$$0<1<2<...<\aleph_0<\aleph_1<...$$

Los cardinales tiene un orden

$$0<1<2<...<\aleph_0<\aleph_1<...$$

• Si X es **finito**, entonces $\mathcal{P}(X)$ es finito ¿Cuál es su cardinal?

Los cardinales tiene un orden

$$0<1<2<...<\aleph_0<\aleph_1<...$$

- Si X es **finito**, entonces $\mathcal{P}(X)$ es finito ¿Cuál es su cardinal?
- ② Si X es **infinito**, entonces $\mathcal{P}(X)$ es **infinito no numerable**.

Los cardinales tiene un orden

$$0<1<2<...<\aleph_0<\aleph_1<...$$

- Si X es **finito**, entonces $\mathcal{P}(X)$ es finito ¿Cuál es su cardinal?
- ② Si X es **infinito**, entonces $\mathcal{P}(X)$ es **infinito no numerable**.

$$\begin{array}{c|c} 0 < 1 < 2 < & \dots & < \aleph_0 & < \aleph_1 < \aleph_2 \dots \\ \mathcal{P}(X) & & \mathcal{P}(X) \\ (X \text{ finito}) & \downarrow & (X \text{ infinito}) \\ \end{array}$$
 No es el cardinal de ningún $\mathcal{P}(X)$

$$\begin{array}{c|c} 0 < 1 < 2 < & \dots & < \aleph_0 & < \aleph_1 < \aleph_2 \dots \\ \mathcal{P}(X) & & \mathcal{P}(X) \\ (X \text{ finito}) & \downarrow & (X \text{ infinito}) \\ \\ & \text{No es el cardinal} \\ & \text{de ningún } \mathcal{P}(X) \\ \end{array}$$

Conclusión: Si podemos construir un Álgebra de Boole \mathcal{B} que tenga cardinal **infinito numerable** (o sea \aleph_0), entonces no podrá existir una biyección (ni un isomorfismo) entre \mathcal{B} y $\mathcal{P}(X)$, para ningún X.

Construcción de \mathcal{B}

Un subconjunto de números naturales se dice *cofinito* si su complemento es finito.

Definimos:

$$\mathcal{B} = \{X \subseteq \mathbf{N} : X \text{ es finito o cofinito}\}.$$

Entonces la estructura

$$\langle \mathcal{B}, \cup, \cap, {}^{c}, \emptyset, \mathbf{N} \rangle$$

es un álgebra de Boole.

Problema de la representación de un reticulado

Las Álgebras de Boole finitas son álgebras de conjuntos. ¿Serán los reticulados finitos reticulados de conjuntos?

