Relaciones Conjuntos Parcialmente Ordenados Reticulados y Álgebras de Boole Teoremas de representación

Introducción a la Lógica y la Computación

Parte I: Estructuras Ordenadas

Clase del 9 de septiembre de 2015

TR no vale para el caso infinito

Existe un álgebra de Boole **infinita** que no es isomorfa $\mathcal{P}(X)$, para ningún X.

TR no vale para el caso infinito

Existe un álgebra de Boole **infinita** que no es isomorfa $\mathcal{P}(X)$, para ningún X.

Construiremos un Álgebra de Boole \mathcal{B} , y usaremos un argumento sobre su cardinalidad para probar que no es isomorfa a ningún álgebra de la forma $\mathcal{P}(X)$.

1 X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y $\{1, 2, ..., n\}$.

- **1** X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y {1, 2, ..., n}.
- Si X no es finito, decimos que X es infinito.

- **1** X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y {1, 2, ..., n}.
- Si X no es finito, decimos que X es infinito.
- ③ X tiene cardinal **infinito numerable** si se puede encontrar una biyección entre X y \mathbb{N} . En tal caso se dice que X tiene cardinal \aleph_0 .

- **1** X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y {1, 2, ..., n}.
- Si X no es finito, decimos que X es infinito.
- ③ X tiene cardinal **infinito numerable** si se puede encontrar una biyección entre X y \mathbb{N} . En tal caso se dice que X tiene cardinal \aleph_0 .
- Si X es infinito y no se puede encontrar tal biyección, decimos que X es infinito no numerable.

- **1** X tiene cardinal **finito** si $X = \emptyset$, o existe $n \in \mathbb{N}$ tal que se puede encontrar una biyección entre X y {1, 2, ..., n}.
- ② Si X no es finito, decimos que X es **infinito**.
- ③ X tiene cardinal **infinito numerable** si se puede encontrar una biyección entre X y \mathbb{N} . En tal caso se dice que X tiene cardinal \aleph_0 .
- Si X es infinito y no se puede encontrar tal biyección, decimos que X es infinito no numerable.
- **5** Ejemplos de conjuntos infinitos no numerables: \mathbb{R} , $\mathcal{P}(\mathbb{N})$. Ambos tienen cardinal \aleph_1 .

Los cardinales tiene un orden

$$0<1<2<...<\aleph_0<\aleph_1<...$$

Los cardinales tiene un orden

$$0<1<2<...<\aleph_0<\aleph_1<...$$

• Si X es **finito**, entonces $\mathcal{P}(X)$ es finito ¿Cuál es su cardinal?

Los cardinales tiene un orden

$$0<1<2<...<\aleph_0<\aleph_1<...$$

- Si X es **finito**, entonces $\mathcal{P}(X)$ es finito ¿Cuál es su cardinal?
- ② Si X es **infinito**, entonces $\mathcal{P}(X)$ es **infinito no numerable.**

$$\begin{array}{c|c} 0 < 1 < 2 < & \dots & < \aleph_0 & < \aleph_1 < \aleph_2 \dots \\ \mathcal{P}(X) & & \mathcal{P}(X) \\ (X \text{ finito}) & \downarrow & (X \text{ infinito}) \\ \end{array}$$
 No es el cardinal de ningún $\mathcal{P}(X)$

$$\begin{array}{c|c} 0 < 1 < 2 < & \dots & < \aleph_0 & < \aleph_1 < \aleph_2 \dots \\ \mathcal{P}(X) & & \mathcal{P}(X) \\ (X \text{ finito}) & \downarrow & (X \text{ infinito}) \\ \\ \text{No es el cardinal} \\ \text{de ningún } \mathcal{P}(X) \\ \end{array}$$

Conclusión: Si podemos construir un Álgebra de Boole \mathcal{B} que tenga cardinal **infinito numerable** (o sea \aleph_0), entonces no podrá existir una biyección (ni un isomorfismo) entre \mathcal{B} y $\mathcal{P}(X)$, para ningún X.

Relaciones Conjuntos Parcialmente Ordenados Reticulados y Álgebras de Boole Teoremas de representación

Construcción de \mathcal{B}

Un subconjunto de números naturales se dice *cofinito* si su complemento es finito.

Construcción de \mathcal{B}

Un subconjunto de números naturales se dice *cofinito* si su complemento es finito.

Definimos:

$$\mathcal{B} = \{X \subseteq \mathbf{N} : X \text{ es finito o cofinito}\}.$$

Construcción de \mathcal{B}

Un subconjunto de números naturales se dice *cofinito* si su complemento es finito.

Definimos:

$$\mathcal{B} = \{X \subseteq \mathbf{N} : X \text{ es finito o cofinito}\}.$$

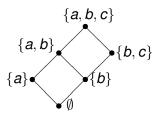
Entonces la estructura

$$\langle \mathcal{B}, \cup, \cap, {}^{c}, \emptyset, \mathbf{N} \rangle$$

es un álgebra de Boole.

Problema de la representación de un reticulado

Las Álgebras de Boole finitas son álgebras de conjuntos. ¿Serán los reticulados finitos reticulados de conjuntos?



Conjuntos decrecientes de un poset

Sea (P, \leq) un poset

Diremos que un subconjunto $D \subseteq P$ es **decreciente** si para todo $x, z \in P$ se tiene que:

$$x \in D$$
 y $z \le x \implies z \in D$.

Conjuntos decrecientes de un poset

Sea (P, \leq) un poset

Diremos que un subconjunto $D \subseteq P$ es **decreciente** si para todo $x, z \in P$ se tiene que:

O sea, un conjunto decreciente satisface que si un elemento se encuentra en el conjunto, entonces todos los elementos menores también están.

Reticulado de conjuntos decrecientes de un poset

Denotaremos mediante $\mathcal{D}(P)$ a la familia de todos los subconjuntos decrecientes de P:

$$\mathcal{D}(P) = \{D \subseteq P : D \text{ es decreciente}\}.$$

Reticulado de conjuntos decrecientes de un poset

Denotaremos mediante $\mathcal{D}(P)$ a la familia de todos los subconjuntos decrecientes de P:

$$\mathcal{D}(P) = \{D \subseteq P : D \text{ es decreciente}\}.$$

Entonces

$$\langle \mathcal{D}(P), \cup, \cap, \emptyset, P \rangle$$
.

es un reticulado es distributivo

Ejemplo

Sea P el poset

Entonces los conjuntos decrecientes son:

$$\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}$$

Problema de la representación de un reticulado

¿Será cierto que para todo reticulado distributivo L existe un poset P tal que

$$L \cong \mathcal{D}(P)$$

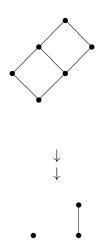
Problema de la representación de un reticulado

¿Será cierto que para todo reticulado distributivo L existe un poset P tal que

$$L \cong \mathcal{D}(P)$$

Dado L un reticulado, ¿cómo obtengo el P tal que $L \cong \mathcal{D}(P)$?

¿Cómo se obtiene P desde L?



Elementos Irreducibles

Sea L un reticulado acotado. Un elemento $x \in L$ será llamado **irreducible** si

- $0 x \neq 0,$
- ② si $x = y \lor z$, entonces x = y o x = z, para todo $y, z \in L$.

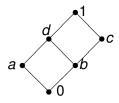
Elementos Irreducibles

Sea L un reticulado acotado. Un elemento $x \in L$ será llamado **irreducible** si

- ② si $x = y \lor z$, entonces x = y o x = z, para todo $y, z \in L$.

La segunda condición es equivalente a decir que x no se puede obtener como supremo de dos elementos distintos de x.

Ejemplos de Elementos Irreducibles



Elementos irreducibles: a, b, c

Forman el poset:

Poset de Elementos Irreducibles

Definición: $Irr(L) = \{i \in L : i \text{ es irreducible}\}$

Poset de Elementos Irreducibles

Definición: $Irr(L) = \{i \in L : i \text{ es irreducible}\}$

Próximo objetivo: Demostrar que todo reticulado distributivo finito L es isomorfo a $\mathcal{D}(P)$, donde el poset (P, \leq) asociado al reticulado L es

$$(Irr(L), \leq)$$

donde \leq es el orden heredado de L.

Hay suficiente cantidad de Irreducibles

Lema

Sea L un reticulado distributivo finito. Entonces para todo $x \in L$ se tiene:

Hay suficiente cantidad de Irreducibles

Lema

Sea L un reticulado distributivo finito. Entonces para todo $x \in L$ se tiene:

- ② si $D \subseteq Irr(L)$ es decreciente, y $x = \sup D$, entonces

$$D = \{i \in Irr(L) : i \leq x\}$$

Prueba del Lema

Lema A

Sea L un reticulado finito, y sean $x, y \in L$ tales que $x \nleq y$. Entonces existe $i \in Irr(L)$ tal que $i \leq x$ e $i \nleq y$.

Teorema de Birkhoff

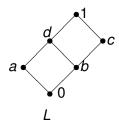
Sea L un reticulado acotado distributivo finito, y sea P = Irr(L). Entonces la función

$$F: L \longrightarrow \mathcal{D}(P)$$

$$x \longrightarrow \{y \in P : y \le x\}$$

es un isomorfismo entre L y $\mathcal{D}(P)$.

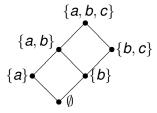
El ejemplo D_{12} completo



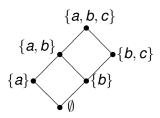
$$Irr(L) = \{a, b, c\}$$

Forman el poset:

$$\mathcal{D}(P) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$$



$$\mathcal{D}(P) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$$



La correspondencia F dada por el Teorema es:

$$0 \rightarrow \emptyset$$
 $a \rightarrow \{a\}$
 $b \rightarrow \{b\}$ $d \rightarrow \{b, d\}$
 $c \rightarrow \{a, b\}$ $1 \rightarrow \{a, b, d\}$

Relaciones Conjuntos Parcialmente Ordenados Reticulados y Álgebras de Boole Teoremas de representación

Nuevo criterio de análisis de distributividad

Se puede observar que la única intervención de la distributividad en la prueba del Teorema de Birkhoff es para probar que *F* es sobre.

Nuevo criterio de análisis de distributividad

Se puede observar que la única intervención de la distributividad en la prueba del Teorema de Birkhoff es para probar que F es sobre.

Criterio de análisis de distributividad

Un reticulado finito es ditributivo si y sólo si $|L| = |\mathcal{D}(Irr(L))|$

Volviendo a las Álgebras de Boole

Vale:

$$At(B) = Irr(B)$$

Volviendo a las Álgebras de Boole

Vale:

$$At(B) = Irr(B)$$

Entonces, si *L* es un reticulado acotado distributivo finito, se tiene:

L es álgebra de Boole si y sólo si Irr(L) = At(L).