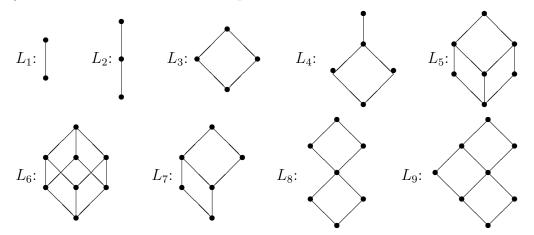
Introducción a la Lógica y la Computación - Estructuras de orden 4/09/2019, Práctico 7: Teorema de Birkhoff para reticulados distributivos.

Objetivos. Comprender la noción de elementos irreducibles identificando en varios reticulados aquellos elementos que lo son. Entender la noción de conjunto decreciente; para P un poset, poder construir el poset de decrecientes de P. Utilizar el teorema de representación para mostrar que un reticulado es o no un reticulado distributivo.

- 1. Considere los siguientes reticulados.
 - a) Dibuje el diagrama de Hasse del poset de elementos irreducibles.
 - b) Dibuje en cada caso el diagrama de Hasse de $\mathcal{D}(Irr(L))$.
 - c) Utilice el Teorema de Birkhoff para determinar si es distributivo o no.



- 2. Dé todos los reticulados distributivos con exactamente 3 elementos irreducibles.
- 3. Sea n producto de primos distintos p_1, p_2, \ldots, p_k , ¿cuáles son los elementos irreducibles de D_n ?
- a) Describa de la forma más clara posible los elementos irreducibles de D_n .
 - b) Determine $Irr(D_{300})$. Escriba a D_{300} como producto de cadenas.
- 5. Explique por qué no existe X tal que D_{60} sea isomorfo a $\mathcal{P}(X)$
- 6. Sean (L, \leq_L) y (M, \leq_M) posets. Considere el conjunto $L \times M$ con \leq definida así: $(x_1, y_1) \leq (x_2, y_2) \sin x_1 \leq_L x_2 \ y \ y_1 \leq_M y_2.$
- a) Sea **n** la cadena de n elementos. Dé el diagramas de Hasse de 2×4 y de $\mathcal{P}(\{a,b\}) \times 2$.
- b) Pruebe que si L y M son reticulados entonces $L \times M$ también lo es. Dé explícitamente las operaciones de supremo e ínfimo.
 - 7. ¿Es 2×3 subreticulado de $\mathcal{P}(\{a, b, c\})$?
- 8. Dar explícitamente el iso entre $\mathbf{2}^3$ y D_{30} .
- 9. ¿Es N_5 subreticulado de D_{630} ? ¿Es D_{12} subreticulado de $\mathcal{P}(\{a,b,c\})$?
- 10. Dé explícitamente isos entre:

- (a) $D_{12} \text{ y } \mathbf{2} \times \mathbf{3}$ (b) $D_{175} \text{ y } \mathbf{2} \times \mathbf{3}$ (c) $D_{99} \text{ y } \mathbf{2} \times \mathbf{3}$ (d) $D_{875} \text{ y } \mathbf{2} \times \mathbf{4}$ (e) $D_{297} \text{ y } \mathbf{2} \times \mathbf{4}$
- 11. Explique por qué no existe n tal que D_{630} sea isomorfo a 2^n
- 12. Determine cuándo D_n es isomorfo a algún $\mathcal{P}(X)$. Dé explícitamente el iso.
- 13. a) Sea $X = \{a, b, c\}$, dé explícitamente el iso entre 2^3 y $\mathcal{P}(X)$
 - b) De un poset P sobre X tal que $\mathcal{D}(P)$ sea iso con 2×3 .