Introducción a la Lógica y la Computación - Práctico complementario.

- (1) Considere los posets P_0, P_1 cuyos diagramas de Hasse se dan abajo. Para cada caso:
 - (a) Muestre los elementos maximales y minimales, indicando además si existen máximo y mínimo.
 - (b) Muestre los elementos que cubren a h.
 - (c) Muestre $inf\{e, f, a\}$
 - (d) Indique si es un poset reticulado.
- (2) (a) Determine si el poset (P_2, \subseteq) es reticulado, donde $P_2 = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,b,d\}\}$
 - (b) Determine las cotas superiores del conjunto $A = \{2, 3, 6\}$ en el poset $(P_3, |)$, donde $P_3 = \{2, 3, 4, 6, 12, 8, 24\}$. ¿Tiene A supremo?
- (3) Responda si es Verdadero o Falso. Justifique su respuesta.
 - (a) En todo reticulado distributivo finito, el mayor elemento se puede escribir como supremo de átomos.
 - (b) Para todo poset P de menos de 4 elementos, $\mathcal{D}(P)$ es un reticulado distributivo acotado.
 - (c) Existe un n tal que D_n sea isomorfo a N_5 .
 - (d) Existe una biyección entre dos Álg. de Boole que preserve el \vee pero no preserve el \wedge
- (4) Pruebe lo siguiente.
 - (a) Sea L un reticulado. Entonces se satisface: $x \lor y \ge (x \land z) \lor (y \land z)$
 - (b) Sea L un reticulado distributivo. Demuestre que el complemento es único. O sea, si $x \lor z = x \lor w = 1^L$ y $x \land w = x \land z = 0^L$, entonces z = w.
- (5) Responda si es Verdadero o Falso. Justifique su respuesta.
 - (a) El poset P_1 (abajo) es un reticulado distributivo.
 - (b) Existe un reticulado distributivo de 24 elementos tal que todo elemento tiene al menos un complemento.
- (6) Defina de manera explícita (punto por punto) el isomorfismo dado por el Teorema de Birkhoff para el reticulado D_{90} . No hace falta que haga el diagrama de Hasse.
- (7) Considere el poset P dado abajo.
 - (a) Dé el diagrama de Hasse de $\mathcal{D}(P)$.
 - (b) ¿Es $\mathcal{D}(P)$ distributivo? Justifique su respuesta.
 - (c) Supongamos que L es un reticulado que satisface que Irr(L) es isomorfo a P. ¿Vale que L es isomorfo a $\mathcal{D}(P)$? Justifique su respuesta.
- (8) Sea B un Álgebra de Boole finita. Pruebe que existe una única manera de escribir a cualquier elemento $x \in B$ como supremo de átomos. Enuncie formalmente este resultado y demuéstrelo. Debe probar todo resultado que utilice.

