Parte II: Lógica Proposicional

7 de octubre de 2015

Semántica

- Las asignaciones son funciones en $\mathcal{V} \to \{0,1\}$.
- Dada una asignación f, definimos la semántica $[\![-]\!]_f \colon Prop \to \{0,1\}.$
- Una proposición P es tautología si para toda asignación f, $[\![P]\!]_f=1$.
- f es asignación de $\Gamma \subseteq Prop$, si para toda $Q \in \Gamma$, $[\![Q]\!]_f = 1$.
- Decimos que P es consecuencia lógica de Γ , $\Gamma \models P$, si para toda f asignación de Γ , se da que $[\![P]\!]_f = 1$.

Deducción natural

- Necesidad de formalizar los esquemas de razonamiento válido.
- Primero se dan reglas de inferencia para construir derivaciones a partir de hipótesis.
- Luego se define por por inducción del conjunto ${\mathcal D}$ de derivaciones.
- Decimos que Q se deduce de Γ , $\Gamma \vdash Q$, si existe una derivación D tal que $hip(D) \subseteq \Gamma$ y concl(D) = Q.
- Realmente las reglas nos permiten concluir proposiciones verdaderas a partir de hipótesis verdaderas?

Derivabilidad y contra-ejemplos

• ¿Cómo podemos probar o refutar las afirmaciones?

$$\{p_0, p_1\} \not\vdash p_2 \qquad \qquad \not\vdash \bot$$
$$\{p_0, p_1\} \vdash p_2 \qquad \qquad \vdash \bot$$

- Podemos revisar todas las derivaciones para corroborar que el segundo rengón es imposible?
- Podemos probar o refutar las afirmaciones:

$$\{p_0, p_1\} \not\models p_2 \qquad \qquad \not\models \bot$$
$$\{p_0, p_1\} \models p_2 \qquad \qquad \models \bot$$

4

Derivabilidad y contra-ejemplos

- ¿Cómo podemos probar o refutar las anteriores afirmaciones?
- Las segundas afirmaciones (aquellas que hablan de modelos) las podemos comprobar rápidamente construyendo las tablas de verdad.
- En cambio, para verificar la validez de una las primeras afirmaciones debemos o bien construir una derivación,
- o bien mostrar que no existe ninguna derivación con la conclusión esperada y las hipótesis permitidas.
- Pero no podemos examinar todas las derivaciones, puesto que son infinitas.
- Por ejemplo, como podemos estar seguros que no podemos concluir \perp utilizando una regla de eliminación o RAA?

Corrección

- Si pensamos que la validez de las fórmulas está dada por su semántica, entonces podemos utilizar la noción de

 para expresar la corrección.
- Una derivación $D \in \mathcal{D}$ con $hip(D) \subseteq \Gamma$ y concl(D) = Q es correcta si para toda asignación f de Γ se da $[\![Q]\!]_f = 1$.
- Nuestro trabajo será mostrar que toda derivación es correcta.

Derivabilidad y contra-ejemplos

 Volviendo a las pregunta del principio, suponiendo corrección, cómo podemos usar

$$\{p_0, p_1\} \not\models p_2 \qquad \mathsf{y} \qquad \not\models \bot$$

para concluir

$$\{p_0, p_1\} \not\vdash p_2 \qquad \mathsf{y} \qquad \not\vdash \bot$$

- Si suponemos que existe una derivación para $\{p_0,p_1\}\vdash p_2$, entonces para toda asignación f de $\{p_0,p_1\}$, tendríamos $[\![p_2]\!]_f=1$.
- Sin embargo la siguiente asignación es un contraejemplo:

$$egin{aligned} f \, p_0 &= 1 \ f \, p_1 &= 1 \ f \, p_j &= 0 \end{aligned} \qquad \mathsf{para} \,\, j > 1$$

 Por lo tanto, estamos en una contradicción y la derivación que supusimos no puede existir.

Teorema de corrección: toda derivación es correcta

- Para probar este teorema usaremos inducción en sub-derivaciones, para ello establecemos el siguiente predicado A sobre derivaciones.
- Por ejemplo, si D es la derivación $\frac{P \wedge Q}{P} \wedge E$, entonces A(D) vale.
- Tomemos Γ tal que $P \wedge Q \in \Gamma$, comprobemos $\Gamma \models P$.
- Para ello tomemos una asignación arbitraria f de Γ y verifiquemos $[\![P]\!]_f = 1.$
- Como f es de Γ y $P \wedge Q \in \Gamma$, entonces $[\![P \wedge Q]\!]_f = 1$, por lo tanto $[\![P]\!]_f = 1$.

Teorema de corrección

Teorema

Si $\Gamma \vdash Q$, entonces $\Gamma \models Q$.

$$(Prop)$$
 Sea D la derivación P y sea $\{P\} \subseteq \Gamma$, es inmediato $\Gamma \models P$.

$$(\wedge E)$$
 Sea D la derivación $\begin{array}{ccc} D' & \vdots \\ \hline P \wedge Q \\ \hline P & \wedge E \end{array}$

Puesto que D' es la subderivación de D, entonces podemos asumir la hipótesis inductiva para D':

para todo
$$\Gamma'\supseteq hip(D')$$
, se da $\Gamma'\models P\wedge Q.$

Para mostrar A(D), tomamos $\Gamma \supseteq hip(D)$ y probamos $\Gamma \models P$. Sea f una asignación arbitraria de Γ , veamos $\llbracket P \rrbracket_f = 1$.

Como hip(D)=hip(D'), para Γ tenemos $\Gamma \models P \land Q$, es decir $\llbracket P \land Q \rrbracket_f = 1$. De lo cual concluimos $\llbracket P \rrbracket_f = 1$.

$$(\wedge I) \text{ Sea } D \text{ la derivación } \begin{array}{ccc} D_1 & \vdots & & \vdots \\ & P & Q & \\ \hline & P \wedge Q & \wedge I \end{array} \text{, veamos } A(D).$$

Como antes, aumimos la h.i. tanto para D_1 para todo $\Gamma_1\supseteq hip(D_1),\ \Gamma_1\models P$

como para D_2

para todo
$$\Gamma_2 \supseteq hip(D_2)$$
, $\Gamma_2 \models Q$

Sea $\Gamma \supseteq hip(D)$ y sea f una asignación de Γ . Como $hip(D_i) \subseteq hip(D) \subseteq \Gamma$, tenemos, aplicando la h.i. en D_1 , $\llbracket P \rrbracket_f = 1$ y, análogamente usando la h.i. en D_2 sabemos $\llbracket Q \rrbracket_f = 1$. Por lo tanto, tenemos $\llbracket P \wedge Q \rrbracket_f = 1$.

[P]

 $(\to I)$ Sea D la derivación $\begin{array}{cc} D' & \vdots \\ \hline Q \\ \hline P \to Q \end{array} \to I$

En este caso asumimos que la h.i. vale para D': para todo $\Gamma' \supseteq hip(D_1)$, $\Gamma' \models Q$.

Tomemos $\Gamma \supseteq hip(D)$ y f una asignación de Γ , probemos $\llbracket P \to Q \rrbracket_f = 1$, es decir $\max(1 - \llbracket P \rrbracket_f, \llbracket Q \rrbracket_f) = 1$. Como $hip(D) = hip(D') \setminus \{P\}$, que f sea de Γ no nos dice nada sobre el valor de $\llbracket P \rrbracket_f$. Si $\llbracket P \rrbracket_f = 0$, entonces $\max(1 - \llbracket P \rrbracket_f, \llbracket Q \rrbracket_f) = \max(1 - 0, \llbracket Q \rrbracket_f) = 1$.

El otro caso es si $\llbracket P \rrbracket_f = 1$; pero ahora f es una asignación de $\Gamma \cup \{P\}$; usando la hipótesis inductiva en D', con $\Gamma' = \Gamma \cup \{P\}$, deducimos $\llbracket Q \rrbracket_f = 1$. De lo cual concluimos $\max(1 - \llbracket P \rrbracket_f, \llbracket Q \rrbracket_f) = \max(1 - \llbracket P \rrbracket_f, 1) = 1$.

tanto, $[\![Q]\!]_f = 1$.

$$(\rightarrow E) \text{ Sea } D \text{ la derivación } D_1 \underbrace{\frac{\vdots}{P} \quad D_2 \quad \underset{P \rightarrow Q}{P \rightarrow Q}}_{P \rightarrow Q} \rightarrow E \\ \text{En este caso asumimos la h.i. sobre } D_1 \text{ y sobre } D_2. \\ \text{Sea } \Gamma \supseteq hip(D), \text{ entonces } \Gamma \supseteq D_i. \text{ Sea } f \text{ una asignación de } \Gamma; \text{ por h.i., entonces } \llbracket P \rrbracket_f = 1 \text{ y también } \llbracket P \rightarrow Q \rrbracket_f = 1. \\ \text{Es decir } 1 = \max(1 - \llbracket P \rrbracket_f, \llbracket Q \rrbracket_f) = \max(0, \llbracket Q \rrbracket_f); \text{ por lo}$$

$$[\neg P]$$

(RAA) Sea D la derivación $D' \stackrel{\vdots}{\underset{P}{\longleftarrow}} RAA$

Ahora podemos asumir la h.i. para D': para todo $\Gamma'\supseteq hip(D')$, $\Gamma'\models\bot$!

Sea $\Gamma \supseteq hip(D') \setminus \{\neg P\}$ y sea f una asignación de $\Gamma.$ Veamos $[\![P]\!]_f = 1.$

Supongamos que para toda f de Γ , tenemos $\llbracket P \rrbracket_f = 0$. Es decir, $\llbracket \neg P \rrbracket_f = 1$; por lo tanto f es de $\Gamma \cup \{ \neg P \}$.

Eso nos permite utilizar la h.i. sobre D' y concluir $[\![\bot]\!]_f=1$, lo cual es una contradicción. Por lo tanto se debe dar $[\![P]\!]_f=1$.

 $(\perp E)$ Sea D la derivación D' $\dfrac{\vdots}{P}$ $\perp E$

En este caso asumimos la h.i. sobre D'.

Sea $\Gamma\supseteq hip(D)$, entonces $\Gamma\supseteq hip(D')$. Sea f una asignación de Γ ; por h.i., entonces $[\![\bot]\!]_f=1$.

Lo último es absurdo y facilmente podemos concluir $[\![P]\!]_f=1.$

Repaso

- Ahora podemos probar $\not\vdash \bot$: Supongamos que $\vdash \bot$, entonces para toda asignación f tenemos $[\![\bot]\!]_f=1$ por corrección. Pero eso es absurdo; por lo tanto no existe derivación con conclusión \bot y todas sus hipótesis canceladas.
- El teorema de corrección nos asegura que todo lo derivable es una tautología.
- Pero... sucederá lo recíproco? Es decir, podremos derivar todas las tautologías?
- En términos más generales: si $\Gamma \models P$, entonces $\Gamma \vdash P$?
- Es decir, se podrán hacer todas las derivaciones de premisas válidas a conclusiones válidas.