Herramientas de usuario

Herramientas del sitio


materias:pln:uba2019:teoricos

Diferencias

Muestra las diferencias entre dos versiones de la página.

Enlace a la vista de comparación

Ambos lados, revisión anteriorRevisión previa
Próxima revisión
Revisión previa
materias:pln:uba2019:teoricos [2019/09/12 20:24] francolqmaterias:pln:uba2019:teoricos [2019/09/23 18:09] (actual) francolq
Línea 89: Línea 89:
     * [[https://www.youtube.com/watch?v=Z7RxBcpyN1U&list=PLQiyVNMpDLKnZYBTUOlSI9mi9wAErFtFm&index=36|Learning Sentiment Lexicons]]     * [[https://www.youtube.com/watch?v=Z7RxBcpyN1U&list=PLQiyVNMpDLKnZYBTUOlSI9mi9wAErFtFm&index=36|Learning Sentiment Lexicons]]
  
 +
 +
 +===== 3ra clase =====
 +
 +
 +  * Estrategias para Machine Learning:
 +    * [[https://docs.google.com/presentation/d/e/2PACX-1vSjH0TlJzJpY3JeWWY_vPQpHUQnOzcg9cEMLzAcXj8cnm00l8G9_2a9L8eyB6aDWlpUgS0dOTE88j4y/pub?start=false&loop=false&delayms=3000|Parte 1]]
 +    * [[https://docs.google.com/presentation/d/e/2PACX-1vQkXr831rL-O4iqzsWN1a7vqGoXSww-5qfdHomFu5AF5_hWC9QBo984Il92jbQ3LLvQmF73Pksib13m/pub?start=false&loop=false&delayms=3000|Parte 2]]
 +
 +  * Notebooks:
 +    * [[https://github.com/PLN-FaMAF/pln-uba-2019/blob/master/notebooks/sentiment/01%20Baseline.ipynb|01 Baseline]]
 +    * [[https://github.com/PLN-FaMAF/pln-uba-2019/blob/master/notebooks/sentiment/02%20Bag%20of%20Words.ipynb|02 Bag of Words]]
 +    * [[https://github.com/PLN-FaMAF/pln-uba-2019/blob/master/notebooks/sentiment/03%20Clasificador%20Basico.ipynb|03 Clasificador Basico]]
 +    * [[https://github.com/PLN-FaMAF/pln-uba-2019/blob/master/notebooks/sentiment/04%20Modelos%20de%20Clasificacion.ipynb|04 Modelos de Clasificacion]]
 +    * [[https://github.com/PLN-FaMAF/pln-uba-2019/tree/master/notebooks/sentiment|Más...]]
 +
 +  * Charla de Rodrigo Loredo en el marco del seminario LIIA.
 +
 +  * Material complementario:
 +    * [[https://www.deeplearning.ai/machine-learning-yearning/|Andrew Ng. “Machine Learning Yearning”. Draft, 2018.]]
 +    * [[https://karpathy.github.io/2019/04/25/recipe/|A Recipe for Training Neural Networks (Andrej Karpathy)]]
 +    * [[https://github.com/EpistasisLab/tpot|TPOT: A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.]]
 +
 +
 +===== 4ta clase =====
 +
 +/*
 +    * [[http://web.stanford.edu/class/cs224n/lectures/lecture1.pdf|Introduction to NLP and Deep Learning]] ([[https://cs.famaf.unc.edu.ar/~francolq/uba2018/lecture1-2.pdf|versión corta]], [[https://www.youtube.com/watch?v=OQQ-W_63UgQ&t=2725s&index=1&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6|videolecture]])
 +*/
 +
 +  * Word Vectors:
 +    * [[http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture01-wordvecs1.pdf|Word Vectors 1]] ([[https://youtu.be/8rXD5-xhemo|videolecture]])
 +    * [[http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture02-wordvecs2.pdf|Word Vectors 2]] ([[https://youtu.be/kEMJRjEdNzM|videolecture]])
 +
 +  * Material complementario:
 +    * [[https://docs.google.com/document/d/18NoNdArdzDLJFQGBMVMsQ-iLOowP1XXDaSVRmYN0IyM/edit|Frontiers in Natural Language Processing Expert Responses:]] encuesta a referentes del área. En particular:
 +      * What would you say is the most influential work in NLP in the last decade, if you had to pick just one?
 +
 +
 +
 +===== 5ta clase =====
 +
 +  * Introducción a Redes Neuronales:
 +    * [[https://www.youtube.com/watch?v=8CWyBNX6eDo&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=3|Neural Networks (cs224n lecture 3)]]
 +    * [[https://www.youtube.com/watch?v=yLYHDSv-288&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=4|Backpropagation (cs224n lecture 4)]]
 +
 +  * Análisis sintáctico:
 +    * [[https://youtu.be/nC9_RfjYwqA|Linguistic Structure: Dependency Parsing (cs224n lecture 5)]]
 +
 +  * Redes Neuronales Recurrentes:
 +    * [[https://www.youtube.com/watch?v=iWea12EAu6U&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=6|Language Models and RNNs (cs224n lecture 6)]]
 +    * [[https://www.youtube.com/watch?v=QEw0qEa0E50&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=7|Vanishing Gradients, Fancy RNNs (cs224n lecture 7)]]
 +
 +  * Links:
 +    * [[http://colah.github.io/posts/2015-08-Understanding-LSTMs/|Understanding LSTM Networks]]
 +
 +
 +===== 6ta clase =====
 +
 +{{:materias:pln:2019:deepmeme.png?direct&400|}}
 +
 +  * Traducción Automática y modelos "sequence to sequence":
 +    * [[https://www.youtube.com/watch?v=XXtpJxZBa2c&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=8| Translation, Seq2Seq, Attention (cs224n lecture 8)]]
 +
 +
 +  * [[https://www.youtube.com/watch?v=yIdF-17HwSk&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=11|Question Answering (cs224n lecture 10)]]
 +
 +
 +  * [[https://www.youtube.com/watch?v=S-CspeZ8FHc&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=14|Contextual Word Embeddings (cs224n lecture 13)]]
 +
 +
 +  * Material complementario:
 +    * [[http://ruder.io/deep-learning-nlp-best-practices/index.html|Deep Learning for NLP Best Practices
 +]] (Sebastian Ruder)
 +    * [[http://nlp.seas.harvard.edu/2018/04/03/attention.html|The Annotated Transformer]] (Alexander Rush)
 +    * [[https://talktotransformer.com/]]
 +    * [[http://ruder.io/4-biggest-open-problems-in-nlp/|The 4 Biggest Open Problems in NLP
 +]] (Sebastian Ruder)
materias/pln/uba2019/teoricos.1568319855.txt.gz · Última modificación: 2019/09/12 20:24 por francolq