Repaso Recorrida de grafos

Algoritmos y Estructuras de Datos II

Recorriendo grafos

12 de junio de 2017

Clase de hoy

- Repaso
- Recorrida de grafos
 - Generalidades
 - Árboles binarios
 - Árboles finitarios
 - Grafos arbitrarios, DFS
 - Grafos arbitrarios, BFS

Repaso

- cómo vs. qué
- 3 partes
 - análisis de algoritmos
 - tipos de datos
 - técnicas de resolución de problemas
 - divide y vencerás
 - algoritmos voraces
 - backtracking
 - programación dinámica: problema de la moneda, problema de la mochila, algoritmo de Floyd
 - recorrida de grafos

Recorrida de grafos

Recorrer un grafo, significa **procesar** los vértices del mismo, de forma organizada de modo de asegurarse:

- que todos los vértices sean procesados,
- que ninguno de ellos sea procesado más de una vez.

Se habla de **procesar** los vértices, pero también utilizaremos la palabra **visitar** los vértices. En este contexto, son sinónimos. Puede haber más de una forma natural de recorrer un cierto grafo.

Recorrida de árboles binarios

Un caso de grafo sencillo que ya han visto es el de árbol binario. Se han visto 3 maneras de **recorrerlo**:

- pre-order Se **visita** primero el elemento que se encuentra en la raíz, luego se **recorre** el subárbol izquierdo y finalmente se **recorre** el subárbol derecho.
 - in-order Se **recorre** el subárbol izquierdo, luego se **visita** el elemento que se encuentra en la raíz y finalmente se **recorre** el subárbol derecho.
- pos-order Se **recorre** el subárbol izquierdo, luego el derecho y finalmente se **visita** el elemento que se encuentra en la raíz.

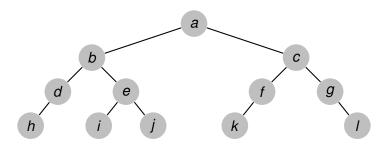
Algoritmos

Los siguientes algoritmos reflejan estas distintas maneras de recorrer árboles binarios, generando listas con sus elementos. Los elementos aparecen en el orden en que se visitan.

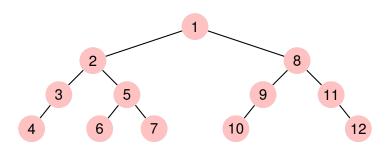
```
\begin{aligned} & \text{pre\_order}(<>) = [ \ ] \\ & \text{pre\_order}(< \textit{I}, \textit{e}, \textit{r} >) = \textit{e} \rhd \text{pre\_order}(\textit{I}) ++ \text{pre\_order}(\textit{r}) \\ & \text{in\_order}(<>) = [ \ ] \\ & \text{in\_order}(< \textit{I}, \textit{e}, \textit{r} >) = \text{in\_order}(\textit{I}) ++ (\textit{e} \rhd \text{in\_order}(\textit{r})) \\ & \text{pos\_order}(<>) = [ \ ] \\ & \text{pos\_order}(< \textit{I}, \textit{e}, \textit{r} >) = \text{pos\_order}(\textit{I}) ++ \text{pos\_order}(\textit{r}) \lhd \textit{e} \end{aligned}
```

Generalidades Árboles binarios Árboles finitarios Grafos arbitrarios, DFS Grafos arbitrarios, BFS

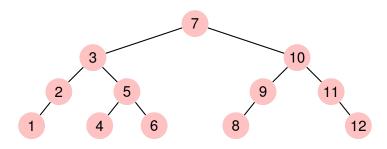
Ejemplo de árbol binario



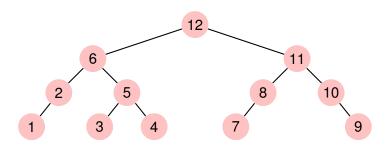
Ejemplo, recorrida pre-order



Ejemplo, recorrida in-order



Ejemplo, recorrida pos-order

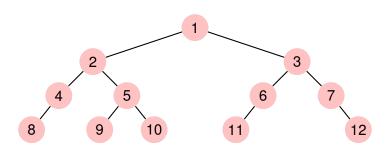


Otras 3 maneras de recorrer árboles binarios

Hay otras tres maneras de recorrer: en cada una de las anteriores, intercambiar el orden entre las recorridas de los subárboles. Por ejemplo:

```
in_order_der_izq(<>) = [] in_order_der_izq(< I, e, r >) = in_order_der_izq(r) ++ (e \rhd in_order_der_izq(r))
```

Otra manera más de recorrer árboles binarios



Otra manera más de recorrer árboles binarios

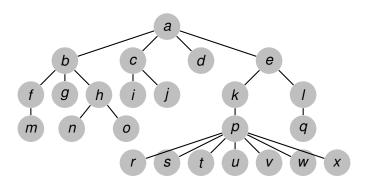
Algunas observaciones:

- salvo la última, todas las formas anteriores de recorrer, primero recorren en profundidad
- la última que presentamos, no,
- recorre a lo ancho.
- Todas las otras son ejemplo de DFS (Depth-first search).
- La última es ejemplo de BFS (Breadth-first search).
- Un programa que recorra en BFS es más difícil de escribir, se verá al final de la clase de hoy.

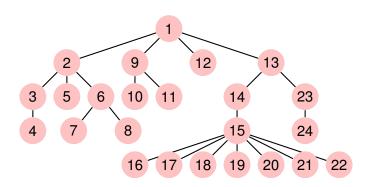
Recorrida de árboles finitarios

- Son árboles en los que cada vértice tiene una cantidad finita (pero puede ser variable) de hijos.
- La recorrida in-order deja de tener sentido (habiendo más de dos hijos, ¿en qué momento habría que visitar el elemento que se encuentra en la raíz?).
- Las recorridas pre-order y pos-order (DFS) y BFS siguen teniendo sentido.

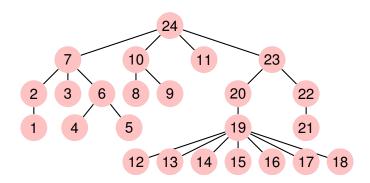
Ejemplo de árbol finitario



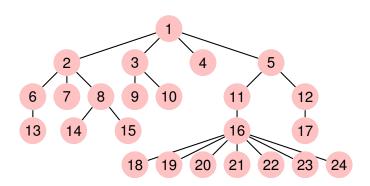
Ejemplo, recorrida pre-order



Ejemplo, recorrida pos-order



Ejemplo, recorrida BFS



Generalidades Árboles binarios Árboles finitarios Grafos arbitrarios, DFS Grafos arbitrarios, BFS

Algoritmos Marcas

Cuando se visita un vértice, se marca con un número positivo.

```
type tmark = tuple
               ord: array[V] of nat
               cont: nat
             end
proc init(out mark: tmark)
     mark.cont:= 0
end
proc visit(in/out mark: tmark, in v: V)
     mark.cont:= mark.cont+1
     mark.ord[v]:= mark.cont
end
```

Algoritmos pre-order

Asumimos que un árbol viene dado por su raíz (root) y una función (children) que devuelve (el conjunto o la lista de) los hijos de cada vértice.

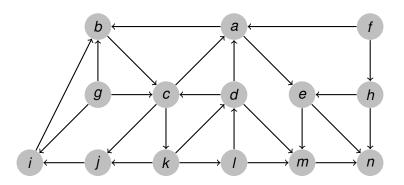
```
fun pre_order(G=(V,root,children)) ret mark: tmark
    init(mark)
    pre_traverse(G, mark, root)
end
proc pre_traverse(in G, in/out mark: tmark, in v: V)
    visit(mark,v)
    for w ∈ children(v) do pre_traverse(G, mark, w) od
end
```

Algoritmos pos-order

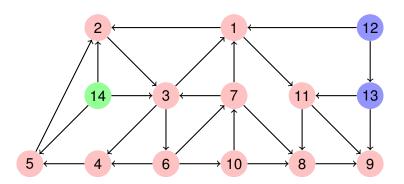
```
fun pos_order(G=(V,root,children)) ret mark: tmark
   init(mark)
   pos_traverse(G, mark, root)
end

proc pos_traverse(in G, in/out mark: tmark, in v: V)
   for w ∈ children(v) do pos_traverse(G, mark, w) od
   visit(mark,v)
end
```

Ejemplo de grafo



Ejemplo, DFS en pre-order



Algoritmos Marcas

Como ahora puede haber ciclos, es necesario poder averiguar si un vértice ya fue visitado.

```
\label{eq:mark.cont} \begin{split} & \text{mark.cont:= 0} \\ & \textbf{for } v \in V \textbf{ do } \text{mark.ord[v]:= 0 od} \\ & \textbf{end} \\ \\ & \textbf{fun } \text{visited(mark: tmark, v: V) } \textbf{ret } \text{b: bool} \\ & \text{b:= (mark.ord[v]} \neq 0) \\ & \textbf{end} \end{split}
```

proc init(out mark: tmark)

Algoritmo DFS

```
fun dfs(G=(V,neighbours)) ret mark: tmark
   init(mark)
   for v \in V do
       if ¬visited(mark,v) then dfsearch(G, mark, v) fi
   od
end
proc dfsearch(in G, in/out mark: tmark, in v: V)
    visit(mark,v)
    for w \in neighbours(v) do
        if ¬visited(mark,w) then dfsearch(G, mark, w) fi
    od
end
```

DFS iterativo

Introducimos una pila para evitar recursión

```
proc dfsearch(in G, in/out mark: tmark, in v: V)
     var p: stack of V
     empty(p)
     visit(mark,v)
     push(v,p)
     while ¬is empty(p) do
        if existe w \in neighbours(top(p)) tal que \neg visited(mark, w) then
          visit(mark,w)
          push(w,p)
        else pop(p)
        fi
     od
end
```

BFS

Si cambiamos la pila por una cola obtenemos BFS

```
proc bfsearch(in G, in/out mark: tmark, in v: V)
     var q: queue of V
     empty(q)
     visit(mark,v)
     enqueue(q,v)
     while ¬is empty(a) do
        if existe w \in neighbours(first(q)) tal que \neg visited(mark, w) then
          visit(mark,w)
          enqueue(a,w)
        else dequeue(q)
        fi
    od
end
```

BFS, procedimiento principal

```
\label{eq:funbfs} \begin{aligned} &\text{fun} \ bfs(G=(V,neighbours)) \ \textit{ret} \ mark: \ tmark \\ & \ init(mark) \\ & \ \textit{for} \ v \in V \ \textit{do} \\ & \ \textit{if} \ \neg visited(mark,v) \ \textit{then} \ bfsearch(G, \ mark, \ v) \ \textit{fi} \\ & \ \textit{od} \\ & \ \textit{end} \end{aligned}
```

Ejemplo, BFS

