(VIGESIMOCUARTA CLASE: LAS MÓNADAS SON ADJUNCIONES)

Vimos que toda adjunción $F \dashv U$ con $\eta: 1_{\mathbf{C}} \longrightarrow U \circ F$ y $\epsilon: F \circ U \longrightarrow 1_{\mathbf{D}}$ da lugar a una mónada (T, η, μ) con $T = U \circ F$ y $\mu_C = U(\epsilon_{F(C)})$.

El recíproco también vale: toda mónada (T, η, μ) proviene de una adjunción $F \dashv U$. Para ello, el primer paso es la construcción de la categoría \mathbf{D} , ausente en la definición de la mónada:

Definición 340. Dada la mónada (T, η, μ) sobre la categoría \mathbb{C} , se define la categoría \mathbb{C}^T llamada la **categoría de Eilenberg-Moore de** T. Sus objetos se llaman T-álgebras, y son pares (A, α) con $\alpha : T(A) \longrightarrow A \in \mathbb{C}$ tales que

$$A \xrightarrow{\eta_A} T(A) \qquad T(T(A)) \xrightarrow{T(\alpha)} T(A)$$

$$\downarrow \alpha \qquad \qquad \downarrow \alpha \qquad \qquad \downarrow \alpha$$

$$A \qquad T(A) \xrightarrow{\alpha} A$$

conmutan. Una flecha $h:(A,\alpha) \longrightarrow (B,\beta) \in \mathbf{C}^T$ es una flecha $h:A \longrightarrow B \in \mathbf{C}$ tal que

$$T(A) \xrightarrow{T(h)} T(B)$$

$$\alpha \downarrow \qquad \qquad \downarrow \beta$$

$$A \xrightarrow{h} B$$

Ejercicio 341. Comprobar que C^T es una categoría.

Hay un funtor del olvido obvio de la categoría \mathbf{C}^T en la categoría \mathbf{C} :

$$U((A,\alpha)) = A$$

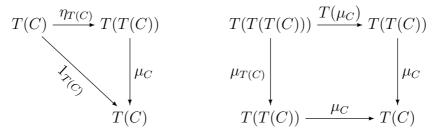
$$U((A,\alpha) \xrightarrow{h} (B,\beta)) = h$$

También hay un funtor de \mathbf{C} en \mathbf{C}^T :

$$F(C) = (T(C), \mu_C)$$

$$F(C \xrightarrow{h} D) = T(h)$$

Para ver que es un funtor, veamos primero que $(T(C), \mu_C) \in \mathbf{C}^T$, es decir, que los diagramas



conmutan. Esto es directo de la definición de mónada. Por último, hay que ver que toda $h: C \longrightarrow D \in \mathbb{C}$ satisface $T(h): F(C) \longrightarrow F(D)$, es decir, el diagrama

$$T(T(C)) \xrightarrow{T(T(h))} T(T(D))$$

$$\mu_C \downarrow \qquad \qquad \downarrow \mu_D$$

$$T(C) \xrightarrow{T(h)} T(D)$$

conmuta. Esto es claro ya que $\mu: T \circ T \longrightarrow T$ es natural.

Tenemos entonces dos funtores $\mathbf{C} \stackrel{F}{\rightleftharpoons} \mathbf{C}^T$.

Prop 342. Si (T, η, μ) es una mónada, entonces $F \dashv U$ es una adjunción.

Como para todo $C \in \mathbf{C}$,

$$U(F(C)) = U((T(C), \mu_C)) = T(C)$$

y para todo $C \xrightarrow{f} D \in \mathbf{C}$,

$$U(F(f)) = U(T(f)) = T(f)$$

obtenemos $U\circ F=T$ y por ello, podemos tomar la propia transformación natural

$$\eta: 1_{\mathbf{C}} \longrightarrow T = U \circ F$$

como el unit de la adjunción.

Sea ahora $(A, \alpha) \in \mathbb{C}^T$. Por definición de objeto de \mathbb{C}^T , el diagrama

$$T(T(A)) \xrightarrow{T(\alpha)} T(A)$$

$$\downarrow^{\alpha}$$

$$\uparrow^{\alpha}$$

conmuta. Por definición de flecha de \mathbf{C}^T , implica que $\alpha: (T(A), \mu_A) \longrightarrow (A, \alpha) \in \mathbf{C}^T$. Como $F(U((A, \alpha))) = F(A) = (T(A), \mu_A)$, tomamos como counit $\epsilon_{(A,\alpha)} = \alpha$ cuya naturalidad se expresa por el diagrama

$$(T(A), \mu_A) \xrightarrow{\alpha} (A, \alpha)$$

$$F(U(h)) \qquad \qquad h \qquad \qquad h$$

$$(T(B), \mu_B) \xrightarrow{\beta} (B, \beta)$$

donde F(U(h)) = F(h) = T(h). El diagrama conmuta pues $h : (A, \alpha) \longrightarrow (B, \beta) \in \mathbf{C}^T$. Luego, $\epsilon : F \circ U \longrightarrow 1_{\mathbf{C}^T}$ es natural.

Ejercicio 343. Completar la prueba de que $F \dashv U$ es una adjunción.

Ejercicio 344. Para la mónada identidad I, ¿cuál es la categoría \mathbb{C}^I ? Identificar F, U, η y ϵ .

Ejercicio 345. Sea \mathbb{C} una categoría con coproducots y objeto terminal, y T la mónada error T(C) = C + 1, ¿cuál es la categoría \mathbb{C}^T ? Identificar F, U, η y ϵ .

Ejercicio 346. Sea \mathbb{C} una categoría con exponenciales y T la mónada memoria $T(C) = C^M$, ¿cuál es la categoría \mathbb{C}^T ? Identificar F, U, η y ϵ .

Ejercicio 347. Sea \mathbb{C} una categoría con exponenciales y T la mónada estado $T(C) = (M \times C)^M$, ¿cuál es la categoría \mathbb{C}^T ? Identificar F, U, η y ϵ .

Ejercicio 348. Idéntico ejercicio para las mónadas de los ejercicios 327, 328 y 329.

Hemos demostrado que dada una mónada $T: \mathbf{C} \longrightarrow \mathbf{C}$ existen una categoría \mathbf{D} y funtores $\mathbf{C} \xrightarrow{F} \mathbf{D}$ tales que $T = U \circ F$ y $F \dashv U$. No son únicos ya que se podría construir una categoría diferente y los funtores van a resultar necesariamente diferentes. De hecho hay una categoría, llamada **de Kleisli**, diferente de \mathbf{C}^T que también da lugar a una adjunción para T.

De todas formas, puede demostrarse que si $\mathbf{C} \xrightarrow{F} \mathbf{D}$ tal que $T = U \circ F$, entonces existe un funtor de comparación $\Phi : \mathbf{D} \longrightarrow \mathbf{C}^T$ tal que $U^T \circ \Phi = U$ y $\Phi \circ F = F^T$ donde U^T y F^T son los funtores obtenidos de la mónada T usando la categoría \mathbf{C}^T :

El funtor Φ que satisface esta propiedad es único. Dado U, si tiene adjunto F, es único. Si el funtor Φ que se obtiene es una equivalencia entre \mathbf{D} y \mathbf{C}^T se dice que U es monádico. Ejemplos de funtores monádicos son los que se obtienen como funtores de olvido de categorías algebraicas: aquéllas categorías que sirven de modelos para teorías ecuacionales como las de monoide, grupo, etc.

Un ejemplo de funtor U que no es monádico es el de olvido de **Poset** \longrightarrow **Set**.

Ejercicio 349. Demostrar que el adjunto a izquierda F de U es el funtor que devuelve el poset discreto. Demostrar que \mathbf{C}^T con $T = U \circ F$ es \mathbf{Set} y concluir que Φ no puede ser equivalencia.

Definición 350. una comónada en una categoría C es una mónada en la categoría C^{op} . Es decir, es un endofuntor $G: C \longrightarrow C$ junto con dos transformaciones naturales

$$\begin{array}{l} \epsilon: G \longrightarrow 1 \\ \delta: G \longrightarrow G \circ G \end{array}$$

 $tales\ que$

$$\delta_G \circ \delta = G\delta \circ \delta$$

$$\epsilon_G \circ \delta = 1_G = G\epsilon \circ \delta$$

Como en el caso de las mónadas, una adjunción $F\dashv U$, $\eta:1_{\bf C}\longrightarrow U\circ F$ y $\epsilon:F\circ U\longrightarrow 1_{\bf C}$ da lugar a una comónada (G,ϵ,δ) donde

$$G = F \circ U : \mathbf{D} \longrightarrow \mathbf{D}$$

$$\epsilon : G \longrightarrow 1$$

$$\delta_D = F(\eta_{U(D)}) : G(D) \longrightarrow G(G(D))$$

Surge también la noción de coálgebra correspondiente a una comónada, y la de funtor comonádico.