Estructura de la materia a grandes rasgos:

Primera Parte: Lenguaje imperativo

Segunda Parte: Lenguaje aplicativo puro, y lenguaje aplicativo con referencias y asignación

Ejes de contenidos de la primer parte

Introducción a la sintaxis y la semántica de lenguajes

2 El problema de dar significado a la recursión e iteración

Un Lenguaje Imperativo Simple

¿Qué define una ecuación recursiva?

Consideramos la siguiente definición en Haskell:

```
g:: Int -> Int
g n = if n == 0 then 0
    else if n == 1 then 1
    else g (n-2)
```

¿Cúal es el significado de este programa?

¿Qué objeto abstracto constituye el significado de este programa?

Una ecuación recursiva para una función entera

$$f n = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f(n-2) & \text{caso contrario (c.c.)} \end{cases}$$
 (ER)

¿la ecuación define una función?

¿define varias?

¿puede una ecuación no definir ninguna función?

Problemas de las definiciones recursivas

Surgen varias dificultades al pretender dar significado de manera genérica a las funciones definidas de esta manera.

El dominio semántico $\mathbf{Z} \to \mathbf{Z}$ es inadecuado, ya que al incluir la recursión se incorpora la posibilidad de que las ecuaciones "no digan nada" sobre el valor de la función en un entero particular.

En términos computacionales: la evaluación que efectúa haskell no termina.

Solucionamos este inconveniente incorporando un objeto al dominio de "resultados posibles" que denota la "no terminación": \bot , denominado *bottom*.

Definimos: $\mathbf{Z}_{\perp} = \mathbf{Z}_{\parallel} \cup \{\perp\}$.

Problemas de las definiciones recursivas

Además (y este es el problema principal) hay muchas funciones de $\mathbf{Z} \to \mathbf{Z}_{\perp}$ que satisfacen la ecuación (ER).

Una solución:

$$mod2 n = \begin{cases} n \% 2 & \text{si } n \ge 0 \\ \bot & \text{si } n < 0 \end{cases}$$

Otra solución:

$$modRara n = \begin{cases} n \% 2 & \text{si } n \ge 0 \\ -1 & \text{si } n < 0 \end{cases}$$

¿Cuál es entonces el significado de la ecuación?

¿Cómo hacemos para señalar "la" solución que nos interesa (en este caso mod2)?

La idea es la siguiente: vamos a inventar un orden parcial entre los elementos de forma tal que \bot sea menor que todos los demás. Y cada vez que escribamos una ecuación como (ER), diremos que nos interesa la menor solución posible.

El sentido del orden es el siguiente. Evitamos las soluciones **demasiado informativas**, o sea las que proveen información que no surge de la ecuación (ER).

Esto se ajusta a la realidad: un programa que no termina no da ninguna información, ni siquiera da la información de que no termina.

Órdenes parciales, posets

Un **orden parcial** es una relación reflexiva, antisimétrica y transitiva.

Un **conjunto parcialmente ordenado** (poset) es un par (P, \leq) , donde P es un conjunto $y \leq$ un orden parcial.

$$(\mathbb{Z}, \leq)$$
, $(\mathcal{P}(X), \subseteq)$ son ejemplos de posets $(X, =)$ se llama **orden discreto**.

Por ejemplo

Poset de Funciones

Si Y con \leq_Y es poset, el espacio de funciones de

$$X \rightarrow Y$$

es un poset con \leq definido así:

$$f \le g$$
 sii para todo $x \in X$ se tiene $f \ x \le_Y g \ x$

para
$$f, g \in X \rightarrow Y$$
.

Lifting

$$(X, \leq_X)$$
 un poset

Entonces $X_{\perp} = X \cup \{\perp\}$ también es un poset con \leq definido así:

$$x \leq y$$
 sii $x \leq_X y \lor x = \perp$

Si X es el orden discreto, X_{\perp} se llama **llano**.

El lifting de $\ensuremath{\mathbb{Z}}$ (con el orden discreto) es el orden llano dado por el diagrama:

Infinito

$$(X, \leq_X)$$
 un poset

entonces $X^{\infty} = X \cup \{\infty\}$ también es un poset con \leq definido así:

$$x \le y$$
 sii $x \le_X y \lor y = \infty$

Supremo

Dado $Q \subseteq P$, el supremo de Q (se escribe $\sup(Q)$) es el elemento de P que satisface:

- sup(Q) es cota superior de Q, y
- sup(Q) es menor que cualquier otra cota superior de Q.

El $\sup(Q)$ puede no existir (por ejemplo, en \mathbb{N} con \leq , el supremo del conjunto de todos los números pares no existe).

Pero en los casos en que el supremo existe, es único. Cuando existe, decimos que Q tiene supremo (que puede no estar en Q, está en P).

Cadenas

En un orden parcial P con \leq , una **cadena** es una secuencia infinita $p_0 \leq p_1 \leq p_2 \leq \ldots \leq p_n \leq \ldots$ de elementos de P.

Si el conjunto $\{p_0, p_1, p_2, \dots, p_n \dots\}$ es infinito, se dice que la cadena es **interesante**. Si dicho conjunto es finito, se dice que la cadena es **no interesante**.

Claramente la cadena es no interesante sii a partir de cierto punto la secuencia no hace más que repetir indefinidamente un elemento. Obviamente, una cadena no interesante siempre tiene supremo: es el elemento que se repite indefinidamente.

Predominios

Un predominio es un poset *P* tal que todas las cadenas tienen supremo. Como las cadenas no interesantes siempre tienen supremo, puede redefinirse así: "un predominio es un orden parcial *P* tal que todas las cadenas interesantes tienen supremo".

Los órdenes discretos y llanos son predominios.

 \mathbb{Z} con \leq no es predominio

 $\mathcal{P}(X)$ con \subseteq es un predominio.

Predominio $X \rightarrow Y$

¿Cuándo $X \rightarrow Y$ es predominio?

Sea Y es predominio, y $f_0, f_1, f_2, ...$ una cadena en $X \to Y$. Entonces para cada $x \in X$, la cadena:

$$f_0(x), f_1(x), f_2(x), ...$$

tendrá supremo en Y.

Entonces definimos $f = sup(\{f_i\})$ de la siguiente manera:

$$f(x) = \sup (\{f_0(x), f_1(x), f_2(x), ...\})$$

Dominios

Un **dominio** es un predominio D con elemento mínimo (que se suele denotar \bot).

Los órdenes llanos son dominios (se los llama dominios llanos). Los órdenes discretos en general no son dominios. Si P es un predominio P_{\perp} es un dominio.

¿Cuándo $X \rightarrow Y$ es dominio?

 $X \rightarrow Y$ será dominio cuando Y lo sea. Además, el menor elemento será la función definida idénticamente \bot_Y :

$$\perp_{X \to Y} : X \to Y$$
 $\perp_{X \to Y} (x) = \perp_{Y}$

Funciones monótonas

Monotonía: Sean (P, \leq_P) y (Q, \leq_Q) posets, y sea $f \in P \to Q$. Se dice que f es **monótona** si f preserva orden, es decir, si

$$x \leq_P y \Rightarrow f x \leq_Q f y$$

Proposición Si la función $f \in P \to Q$ entre predominios es monótona, entonces $\sup_{Q}(\{f \ p_i | i \in \mathbb{N}\})$ existe, y

$$\sup_{Q}(\{f|p_i|i\in\mathbb{N}\})\leq_Q f\sup_{P}(\{p_i|i\in\mathbb{N}\})$$

La recíproca de la proposición no es cierta. ¿Contraejemplo?

Continuidad

Sean P y Q predominios con \leq_P y \leq_Q respectivamente y \sup_P y \sup_Q respectivamente. Sea $f \in P \to Q$. Se dice que f es **continua** si f preserva supremos de cadenas, es decir, si

$$p_0 \leq_P p_1 \leq_P p_2 \leq_P p_3 \leq_P \ldots \leq_P p_n \ldots$$

entonces el supremo $\sup_{Q}(\{f \ p_i | i \in \mathbb{N}\})$ existe y

$$\sup_{Q}(\{f|p_i|i\in\mathbb{N}\})=f\left(\sup_{P}(\{p_i|i\in\mathbb{N}\})\right)$$

Proposición Si *f* es continua, entonces *f* es monótona.

Corolario Sean P y Q predominios. Sea $f \in P \to Q$ monótona. Entonces, f es continua sii para toda cadena interesante $p_0 \le_P p_1 \le_P p_2 \le_P p_3 \le_P \ldots \le_P p_n \le_P \ldots$ vale:

$$f\left(\sup_{P}(\{p_i|i\in\mathbb{N}\})\right)\leq_Q\sup_{Q}(\{f|p_i|i\in\mathbb{N}\})$$

Funciones estrictas Sean D y D' dominios con \bot y \bot' respectivamente. Se dice que la función $f \in D \to D'$ es **estricta** si f preserva elemento mínimo, es decir, si $f \bot = \bot'$.

Teorema del Menor Punto Fijo

Sea D un dominio, y $F \in D \rightarrow D$ continua. Entonces

$$\sup_{D}(\{F^i\perp|i\in\mathbb{N}\})$$

existe y es el menor punto fijo de F.

Demostración del TMPF

Claramente $\bot \le F \bot$. Como F es monótona obtenemos

$$F \perp \leq F (F \perp) = F^2 \perp$$

Iterando esto obtenemos $\bot \le F \bot \le F^2 \bot \le F^3 \bot \le ...$, es decir que $\{F^i \bot | i \in \mathbb{N}\}$ es una cadena y por lo tanto el supremo $x = \sup(\{F^i \bot | i \in \mathbb{N}\})$ existe.

Veamos que es punto fijo de F, es decir, que F x = x:

$$F x = F \sup(\{F^i \perp | i \in \mathbb{N}\})$$

$$= \sup(\{F (F^i \perp) | i \in \mathbb{N}\})$$

$$= \sup(\{F^{i+1} \perp | i \in \mathbb{N}\})$$

$$= \sup(\{F^i \perp | i \in \mathbb{N}\})$$

$$= x$$

Veamos que es el menor de ellos. Sea y punto fijo de F, es decir F y = y. Veamos que $x \le y$.

Claramente $\bot \le y$ por ser elemento mínimo.

Como F es monótona, se obtiene $F \perp \leq F$ y = y.

Iterando, obtenemos $F^i \perp \leq y$ para todo i. Es decir, y es cota superior de la cadena $\{F^i \perp | i \in \mathbb{N}\}.$

Como el supremo es la menor de esas cotas,

$$x = \sup(\{F^i \perp | i \in \mathbb{N}\})$$

$$\leq y$$

Fin de la demostración del TMPF.

Aplicación del TMPF al problema original

Queremos encontrar la menor solución a la ecuación

$$f n = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f(n-2) & \text{caso contrario (c.c.)} \end{cases}$$
 (ER)

Definiremos $F \in (\mathbb{Z} \to \mathbb{Z}_{\perp}) \to (\mathbb{Z} \to Z_{\perp})$ de manera que:

f satisface (ER) si y sólo si f es punto fijo de F

Aplicación del TMPF al problema original

$$F f n = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f (n-2) & \text{si } n \notin \{0, 1\} \end{cases}$$

Así, F f n es un nombre para la parte derecha de la ecuación (ER), que ahora se puede reescribir

$$f n = F f n$$

O más brevemente,

$$f = F f$$

Es decir que buscar una solución a la ecuación (ER) es lo mismo que buscar un punto fijo de F. Y buscar la menor solución es lo mismo que buscar el menor punto fijo de F.

Asumiendo que F es continua, la menor solución es

$$\sup_{\mathbb{Z} o \mathbb{Z}_{\perp}} (\{F^i \perp_{\mathbb{Z} o \mathbb{Z}_{\perp}} | i \geq 0\})$$

donde $\perp_{\mathbb{Z} \to \mathbb{Z}_{\perp}}$ es el elemento mínimo de $\mathbb{Z} \to \mathbb{Z}_{\perp}$, es decir, la función que devuelve siempre \perp .

¿Cómo calcular el menor punto fijo en $\mathbb{Z} \to \mathbb{Z}_{\perp}$?

Dadas $f,g\in\mathbb{Z}\to\mathbb{Z}_+$, tenemos que

 f ≤ g sii f está menos definida que g, y donde están ambas definidas valen lo mismo.

Decimos que f está menos definida que g si f $n = \bot$ cada vez que g $n = \bot$.

 $\bullet \ \mathbb{Z}_{\perp}$ es un orden llano, de manera que las únicas cadenas posibles son de la forma:

$$\perp \leq \perp \leq ... \leq \perp \leq k \leq k...$$

¿Cómo calcular el menor punto fijo en $\mathbb{Z} o \mathbb{Z}_{\perp}$?

Conclusión:

Si f es la solución buscada (el menor punto fijo), entonces obtenemos el valor de f n de la siguiente manera:

Si la cadena

$$F^0 \perp_{\mathbb{Z} \to \mathbb{Z}_\perp} n, \ F^1 \perp_{\mathbb{Z} \to \mathbb{Z}_\perp} n, \ F^2 \perp_{\mathbb{Z} \to \mathbb{Z}_\perp} n \dots$$

adopta algún valor ditinto de \perp , ese será el valor de f n

• Si la cadena mencionada es siempre \perp , entonces f $n = \perp$

Introducción a la sintaxis y la semántica de lenguajes El problema de dar significado a la recursión e iteración Un Lenguaje Imperativo Simple