15

The Simple Type System

Rudimentary type systems appeared in even the earliest higher-level program-
ming languages, such as Fortran, Cobol, and Algol 60. Soon it was realized that
such systems permitted a wide variety of programming mistakes to be detected
during compilation, and provided information that could be used effectively to
improve data representations. The consequence, beginning in the late 1960’s, was
a sequence of languages, such as PL/I, Algol 68, Pascal, and Ada, with extensive
and complicated type systems.

Unfortunately, the type systems of these languages had serious deficiencies
that limited their acceptance: Many of the languages contained “type leaks”
that prevented the compile-time detection of certain type errors, many required
so much type information that programs became unworkably verbose, and all
imposed constraints that made certain useful programming techniques difficult
or impossible.

Meanwhile, however, more theoretically-minded researchers began a systematic
study of type systems, particularly for functional languages. Over the last two
decades, they have shown that the application of sophisticated mathematical and
logical techniques could lead to substantial improvements. Polymorphic systems
have been devised that permit a procedure to be applied to a variety of types
of parameters without sacrificing compile-time type checking. Type-inference
algorithms have been developed that reduce or eliminate the need for explicit
type information. (These two developments were central to the design of ML in
the late 1970’s.)

Other researchers, while exploring the connections between types and construc-
tive logic, discovered that (at least in the setting of functional programming) the
distinction between the type of a program and a full-blown logical specification
of the program’s behavior is one of degree rather than kind. This line of research
led to the development of such systems as NuPrl and Coq that automatically
extract a program from a mechanically verified proof (in intuitionistic logic) that
its specification can be met. It also led to the Logical Framework, a metalogic for
logical systems, including purely mathematical logics, logics for proving program

315

316 15 The Simple Type System

correctness, and type systems. Most important, perhaps, it led to the realization
that specifications of interfaces between program modules are also instances of
type systems; this realization led to the module systems of languages such as
Standard ML.

At present there is a rich variety of type systems that are the subject of active
research. In particular, many questions of how different systems are related, or
how they might be unified, are still open research topics. Nevertheless, these
systems all share a common starting point that is often called the simple type
system. (It is essentially the simply typed lambda calculus, with appropriate
extensions to deal with the additional features of the functional languages de-
scribed in previous chapters.) We will begin our treatment of types by describing
the simple system in this chapter, and then consider various extensions (largely
in isolation from one another) in Section 15.7 and in later chapters.

Our exposition will be limited to purely functional languages. The discussion
of syntactic issues (i.e. what are types and when do expressions satisfy typing
judgements?) will be largely independent of evaluation order. However, the pre-
sentation of semantics (i.e. what do types mean?) will be limited to the direct
denotational semantics of normal-order evaluation.

15.1 Types, Contexts, and Judgements

The types of the simple type system themselves constitute a small language,
whose abstract syntax is

(type) ::= int | bool | (type) — (type)

| prod(({type), ..., (type)) | sum({type), ..., (type))
| list (type) | cont (type)

We will also use the following abbreviations:
8o x 61 % prod(6y, 61)
unit & prod()
0o + 61 % sum(6y, 61).

In writing types, we will give operators the following precedences (in decreasing
order):

(list, cont), X, +, —,

where x and + are left-associative but — is right-associative. For example,
int — list int x bool — int stands for int — (((list int) x bool) — int).

We will give precise meanings to types in Sections 15.4 to 15.6, but in the
meantime it is useful to give an informal reading;:

15.1 Types, Contexts, and Judgements 317

o The primitive type int denotes the set of integers.

e The primitive type bool denotes the set of boolean values.

e The function type 6y — 01 denotes the set of functions that return a value of
type 6, when applied to a value of type 6.

e The product prod(fy,...,60,-1) denotes the set of tuples with n fields of types
Ao, - - . ,en—l.

e The sum or disjoint union sum(fy,...,6,_1) denotes the set of alternative
values with tags less than n, where a value tagged with k has type 0.

o list denotes the set of lists whose elements have type 6.

e cont 0 denotes the set of continuations that accept values of type 6.

The next step is to introduce contexts, which are lists that assign types to
patterns
(context) ::= | (context), (pat): (type)
where in pg: 8o, . . . , Pn—1: 0n—1 the patterns po, ..., p,—1 have no variables in com-

mon. (In simple cases, the patterns are merely variables.) Then, if 7 is a context,
e is an expression, and @ is a type,

The:0

is called a typing judgement and is read “e has type 8 under 7” or “m entails that
e has type 6”.

(The present use of the word context is unrelated to our earlier use, as in Section
2.8, to denote an expression with a hole in it where one can place various subex-
pressions. Some authors call 7 a type assignment or a signature, but these terms
can also be confusing: A type assignment has nothing to do with the imperative
operation of assignment, and the term signature usually denotes a specification of
the types of constants or primitive operators rather than of variables or patterns.)

The following are examples of valid typing judgements (for the moment, the
reader should ignore the underlining):

m:int, n:int F m + n: int
f:int — int,x:int F f(fx) : int
f:int — int F Ax. f(fx) : int — int
F Af. Ax. f(fx) : (int — int) — int — int
f:bool — bool, x: bool I- f(fx) : bool
F Mf. M. f(fx) : (bool — bool) — bool — bool
{f,x): (int — int) x int F f(fx) : int
F A({f,x). f(fx) : (int — int) x int — int.

318 15 The Simple Type System

The fourth, sixth, and eighth lines displayed above are typing judgements with
empty contexts, which make sense for closed expressions. Such judgements can
also be given for the functions defined in Section 11.5:

F FACT : int — int

F ITERATE : int — (int — int) — int — int

+ ITERATE : int — (bool — bool) — bool — bool

F APPEND : list int — list int — list int

F MAPCAR : (int — bool) — list int — list bool

F FILTER : list int — (int — bool) — list int

F EQLIST : list int — list int — bool

+ MERGE : list int — list int — list int

+ REDUCE : list int — (int — bool — bool) — bool — bool

+ SEARCH : list int — (int — bool) — ‘
(int — bool) — (unit — bool) — bool.

(Here each of the uppercase names abbreviates a closed expression for the ap-
propriate function; for example, FACT abbreviates letrec fact = An. if n =
0 then 1 else n x fact(n — 1) in fact.)

Notice that two judgements can give different types to the same expression,
even under the same context. In fact, each of the above judgements would remain
valid if one replaced all of the nonunderlined occurrences of int by some arbitrary
type and all of the nonunderlined occurrences of bool by some (possibly different)
arbitrary type. At the other extreme, there are ill-typed expressions, such as
true + x or x x, that do not satisfy any typing judgement.

15.2 Inference Rules

We use inference rules to specify which typing judgements are valid. Within these
type inference rules (abbreviated TY RULE), we will use the following metavari-
ables, sometimes with primes or subscripts:

m (context) v (var)
6 (type) p (pat)
e (exp) k,n N.

The valid typing judgements of the simple type system are those that can be
proven using the following rules. (We give rules for the constructs of both the
eager-evaluation language of Chapter 11 and the normal-order language of Chap-
ter 14, including constructs defined as syntactic sugar.)

15.2 Inference Rules 319
TY RULE: Constants and Primitive Operations
7 I true : bool 7k 0:int etc.
ke :int ke :int
etc.
Tk eg+er:int
mkep:int mhkep:int (15.1)
etc.
7k ey =e;:bool
7w ey : bool 7k e; : bool
etc.,
m ey Aep:bool
TY RULE: Conditional Expressions
7+ eg : bool mhe :0 mhey:0
(15.2)
7w Fif eg then e; else es : 6,
TY RULE: Variables
TkFuv:0 when 7 contains v: 0, (15.3)
TY RULE: — Introduction
m,p:0ke: @
(15.4)
TkAp.e: 0§,
TY RULE: — Elimination
The:0 -0 e :6
(15.5)
mheye : ¢,
TY RULE: Product Introduction
mheg: b mhen_1:0ph_1
(15.6)
mt {eo,.-.,en—1) : prod(fy,...,0h1),
TY RULE: Product Elimination
mke:prod(fy,...,0h,1
(n1) when k < n, (15.7)

mhkek:6

320 15 The Simple Type System
TY RULE: Sum Introduction
mhe:b
when k < n, (15.8)
nkQke:sum(fy,...,0,_1)
TY RULE: Sum Elimination
7k e:sum(fp,...,0,_1)
mhey:0p— 0
(15.9)
il épn—1: 9,,-1 — 6
7 I sumcase e of (eg,...,e,—1) : 6,
TY RULE: Patterns
7I',p0:90,...,pn_1:9n_1,7l'/ Fe:6
p (15.10)
7, (Poy - - -y Pn—1): Prod(bp, . ..,0,_1), 7' F e : 6,
TY RULE: let Definitions
il €p : 90
T en_1: 60,1 (15.11)
w,po:0oy...,Pn-1:0p_1-€:0
mhletpg=eg, ... ,pp_1=en_1ine:d,
TY RULE: letrec Definitions
7r)p0:90a <. apn-—l:an—l Feo: 6o
™, Po: 90a <oy Pn—1: en—l F €n—1 - en——l (1512)
7I',p0:90,. .. ,pn_ltan__l Fe:0
wh letrecpg =€, ... ,pn_1 =en_1ine: 0,
TY RULE: Fixed Point
mhe:0—80
—_— (15.13)
mhkrece:#0,
TY RULE: List Introduction
- They: 0 T e :listd
7 b nil : list 6 (15.14)

mheg::er: list 4,

15.2 Inference Rules 321

TY RULE: List Elimination

7t eg:list 0 ke : 0 mhexy:0—=listd = ¢

(15.15)
7 |- listcase ¢g of (e1,e2) : €,
TY RULE: callcc
mhe:contf — 0
(15.16)
I callcc e : 6,
TY RULE: throw
mheg: cont mher:0
(15.17)
7 - throw e e; : ¢,
TY RULE: error
7 I error : 6. (15.18)

(The last rule captures the intention that the result of error should not be a type
error. In contrast, the absence of any rule for typeerror captures the intention
that the result of typeerror should always be a type error.)

The following is a simple example of the use of these rules in proving a typing
judgement:

f:int — int,x:int - f : int — int (15.3
f:int — int,x:int - x : int (15.3
f:int — int,x:int - fx : int (15.5,1,2
f:int — int,x:int |- f(fx) : int (15.5,1,3
f:int — int - Ax. f(fx) : int — int (1544
F Af. Ax. f(fx) : (int — int) — int — int (15.4,5

)
)
)
)
)
)

AN

A less trivial example is provided by the recursive definition of the function
append given in Section 11.5. Let 7y, ..., m5 abbreviate the following contexts:

w1 = append: list int — list int — list int
my = mp, x: list int

w3 = mo,y: list int

my = Ty, i:int

s = T4, r: list int.

322 15 The Simple Type System

Then the following is a proof of a typing judgement for an expression for the
append function:

1. =5 append : list int — list int — list int (15.3)
2. 75 b or:list int (15.3)
3. w5k append r: list int — list int (15.5,1,2)
4. 75ty :list int (15.3)
5. w5t append ry : list int (15.5,3,4)
6. 7m5Fi:int (15.3)
7. w5Fi:appendry :list int (15.14,6,5)
8. ma bk Ar.i: appendry :list int — list int (15.4,7)
9. w3k Ai. Ar.i::append ry : int — list int — list int (15.4,8)
10. w3k y: list int (15.3)
11. w3k x: list int (15.3)
12. w3 | listcase x of (y, Ai. Ar.i::append ry) : list int (15.15,11,10,9)
13. my F My. listcase x of (y, Ai. Ar.i::appendry):

list int — list int (15.4,12)
14. m F Ax. Ay. listcase x of (y, Ai. Ar.i::appendry):

list int — list int — list int (15.4,13)
15. mq I append : list int — list int — list int (15.3)
16. I letrec append = Ax. Ay.

listcase x of (y, Ai. Ar. i:: append r y) in append :

list int — list int — list int

(15.12,14,15)

A third example illustrates the use of products and compound patterns in

typing a function that is similar to append except that it accepts a pair of lists
rather than one list after another. Let mq,..., 5 abbreviate the contexts:

m, = appendpr: list int x list int — list int
mg = 71, (X,y):list int X list int

w3 = 71, X: list int, y: list int

T4 = T3, i:int

s = T4, r: list int.

15.2 Inference Rules 323

Then:

1. w5 appendpr : list int x list int — list int (15.3)
2. w5k r:list int (15.3)
3. w5k y:listint (15.3)
4. 75tk (r,y):list int x list int (15.6,2,3)
5. s b appendpr(r,y) : list int (15.5,1,4)
6. m5Hi:int (15.3)
7. w5t i::appendpr(r,y) : list int (15.14,6,5)
8. mg bk Ar.i::appendpr(r,y) : list int — list int (15.4,7)
9. w3k Ai. Ar.i:: appendpr(r,y) : int — list int — list int (15.4,8)
10. w3y : list int (15.3)
11. w3k x: list int (15.3)
12. 73 I listcase x of (y, Ai. Ar.i:: appendpr(r,y)) : list int (15.15,11,10,8)
13. mo | listcase x of (y, Ai. Ar. i :: appendpr(r,y)) : list int (15.10,12)
14. 1 F A(x,y). listcase x of (y, Ai. Ar. i:: appendpr(r,y)) :

list int x list int — list int (154,13)
15. m; - appendpr : list int X list int — list int (15.3)

16. letrec appendpr = A(x,y).
listcase x of (y, Ai. Ar. i:: appendpr(r,y)) in appendpr :
list int x list int — list int (15.12,14,15)

It should be noted that, when using rules 15.4, 15.11, and 15.12, which deal with
binding constructs, one must sometimes rename bound variables after applying
the rule, to get around the restriction that patterns in contexts must have disjoint
variables, For example, there is no instance of 15.4 whose conclusion is x: bool -
Ax. X : int — int, since the corresponding premiss, x:bool,x:int F x : int,
contains an illegal context. But one can use the rule to prove x:bool F AX'. X' :
int — int and then rename x’ in the lambda expression.

Finally, it should be emphasized that the introduction of simple types changes
the status of the constructions letrec and rec for recursive definition and fixed
points. As mentioned in Section 14.4, in a untyped language using normal-order
evaluation, these constructions can be defined as syntactic sugar by using the
expression Y that maps functions into their least fixed-points. (One can also
desugar letrec in untyped eager-evaluation languages.) Such definitions, how-
ever, are ill-typed in most type systems. In fact, it has been shown for the simple
type system that, in the absence of any explicit construction for recursion, the

334 15 The Simple Type System

15.5 The Intrinsic View

We now turn to the intrinsic view of the semantics of types, which is associated
with the logician Alonzo Church and is sometimes called the “ontological” view.

In the extrinsic view of the previous section, the meaning of an expression is
independent of the type system, while the meaning of a type is a partial equiv-
alence relation whose domain is the set of values of expressions of the type. For
example, the meaning of Ax. x is the identity function on V,, which belongs to
the domains of the meanings of both int — int and bool — bool (since, roughly
speaking, it maps integers into integers and booleans into booleans).

In contrast, in the intrinsic view, an expression only has a meaning when it
satisfies a typing judgement, the kind of meaning depends on the judgement,
and an expression satisfying several judgements will have several meanings. For
example, corresponding to the judgement - Ax. x : int — int the value of Ax. x is
the identity function on the domain that is the meaning of int, while correspond-
ing to the judgement - Ax. x : bool — bool the value of Ax. x is the identity
function on the domain that is the meaning of bool. On the other hand, ill-typed
expressions such as true + x or x x have no meaning at all.

As in the previous section, to keep things simple we limit our semantic descrip-
tion to normal-order evaluation; we disregard lists, let, letrec, and compound
patterns; and we give nontype errors the same meaning as nontermination.

The first step in developing an intrinsic semantics is to define the meaning of
each type 6 to be a domain, which we will denote by D(6). The function D is
defined by syntax-directed equations on the syntax of types. For primitive types
we have the obvious flat domains

D(int) =Z, D(bool) =B,

while for compound types we express each type constructor in terms of the anal-
ogous constructor for domains:

D(6 — ¢') = D(§) — D(6')
D(prod(ﬁo, vee ,Gn_l)) = D(oo) X oo X D(Gn_l)
D(sum(ﬂo, ey Gn_l)) = (D(oo) +---+ D(Gn_l))l.

(Notice the use of lifting in the last equation to convert a predomain into a
domain. A lifted disjoint union is often called a “separated sum” of domains.)

The next step is to define the meaning of a context 7 to be a domain, which we
will denote by D*(). To do this, we regard the context m = vg: 6, ..., Up—1:Op—1
as the function on the finite set {vo,...,vn—1} that maps each v; into the type
6;. Then the meaning of 7 is the iterated product, over {vg,...,vn—1}, of the
domains that are the meanings of the 6;:

15.5 The Intrinsic View 335

D*(m) = H D(mv).

vedom 7

As with all products of domains, D*(7) is ordered componentwise. Its mem-
bers are environments that act on finite sets of variables (rather than the en-
vironments used previously in this book, which are defined for all variables).
For example, [x:7 | y:true | zzAz:Z,. z] is an environment in the domain
D*(x:int,y: bool, z: int — int).

Finally, we consider the intrinsic semantics of expressions, which is fundamen-
tally different from either untyped or extrinsic typed semantics. When we say
that an expression has a meaning for every typing judgement that it satisfies, we
really mean that meanings are attached to judgements rather than to expressions.
For every valid typing judgement 7 I- e : € there is a meaning

[rte:68] e D*(r) — D(9)

that is a continuous function from environments in the meaning of 7 to values
in the meaning of §. One can think of this as the meaning of e corresponding to
7 b e : 8, but fundamentally it is just the meaning of 7 |- e : 8 itself. For example
(where [] denotes the empty environment),

[F Xx.x:int > int][] =Az€Z,. 2z
[F Ax. x : bool = bool][] = Az e Bj. z.

When we attach meaning to judgements rather than expressions, however, it no
longer makes sense to define the meaning by syntax-directed semantic equations,
which are based on structural induction over expressions. Instead, we define the
meaning of judgements by structural induction on the proofs (viewed as trees) of
judgements.

For each type inference rule, we give a typed semantic equation that, for every
instance of the rule, expresses the meaning of the conclusion of the instance in
terms of the meanings of the premisses of the instance. Within these semantic
equations, we will use the metavariables:

9 (type) z values in some D(0)
yp n environments in some D* ()
7 (context) en N
e (exp) ;7
v (var) b B

In the typed semantic equations themselves (abbreviated TY SEM EQ), we indicate
the correspondence with the type inference rules in Section 15.2 by parenthesized
references. (Notice that the equation for A defines short-circuit evaluation.)

336 15 The Simple Type System

TY SEM EQ: Constants and Primitive Operations (15.1)

[7 F true: bool]n = ¢y true
[+ O:int]n = ¢+ 0
[7 - eo + er:int]n = (Ai. (M. i1 (i + 1)), ([7 F ex:int]n)) |, ([x F eo:int]n)
[7+ eo = erzbool]n = (Ai. (M. i4(i =17')),, ([7 F ex:int]n)) , ([7 F eq: int]n)
[7F eg A er:bool]n
= (Ab. if b then [r I e1:bool]n else ¢4 false) | ([« F eg: bool]n),

TY SEM EQ: Conditional Expressions (15.2)
[7 | if eg then e; else ez : 0]n
= (Ab. if b then [r e : 0]n else [r ez : 8]n) | ([F e : bool]n),
TY SEM EQ: Variables (15.3)

[*Fv:0ln=nv when 7 contains v: 0,

TY SEM EQ: — Introduction (15.4)
[tk Xv.e:0—0]n=rzeD®). [r,v:0Fe:0][n]|v:z],

TY SEM EQ: — Elimination (15.5)

[rHeser:0In=([r+eo:0— 8n)([rF e :8]n),

TY SEM EQ: Product Introduction (15.6)
[7F {eo,--.,en-1) : prod(fy,...,0,-1)]n
={([rteo:6]n,...,[7F en—1:0n1]n),
TY SEM EQ: Product Elimination (15.7)
[7Fek:6k]n=([rF e:prod(by,...,0,_1)]n).k when k < n,

TY SEM EQ: Sum Introduction (15.8)

[rFQ@ke:sum(fy,...,0,1)]n = t4(k,[7 F e : 6k]n) when k < n,

TY SEM EQ: Sum Elimination (15.9)
[x I sumcase e of (eq,...,en—1):6]n
= (Mk,2) € D(6o) + -+ + D(On_1). [7 b e : 0 = 0]nz) |
(Jr F e :sum(by,...,0,-1)]n),

15.5 The Intrinsic View 337

TY SEM EQ: Fixed Point (15.13)
[r-rece:0]n=Ype(lr-e:0 = 0n).

To see how these rules define the meaning of expressions, consider the first
proof of a typing judgement giving in Section 15.2:

1. f:int — int,x:int F f : int — int (15.3)
2. f:int — int,x:int F x : int (15.3)
3. f:int — int,x:int F fx : int (15.5,1,2)
4. f:int — int,x:int F f(fx) : int (15.5,1,3)
5. f:int — int - Ax. f(fx) : int — int (15.4,4)
6. FAf. Ax. f(fx) : (int — int) — int — int (15.4,5)

For each step of this proof, corresponding to the type inference rule used to infer
the step, there is a semantic equation expressing the meaning of the judgement at
that step in terms of the meanings of the earlier judgements that were premisses
to the inference. Thus one can obtain the meaning of the judgements in the proof
by considering the steps in succession:

1. [f:int — int,x:int - f : int — int]n = nf (15.3)

2. [f:int — int,x:int F x : int]y = nx (15.3)

3. [f:int — int,x:int F fx : int]n (15.5,1,2)
= ([f:int — int,x:int F f : int — int]n)([f:int — int,x:int - x : int]n)
= (nf)(nx)

4. [f:int — int,x:int F f(fx) : int]n (15.5,1,3)
= ([f:int — int,x:int F f : int — int]n)([f: int — int,x: int - fx : int]n)
= (nf)((nf)(nx))

5. [f:int — int F Ax. f(f x) : int — int]n (15.4,4)

=AzeZ,. [fiint — int,x:int - f(fx) : int][n | x: 2]
=XzeZi. ([n|x2]f)(([n [x2]f)([n|x2]x))
=AzeZy. (nf)((nf)2)

6. [F M. M. f(fx) : (int — int) — int — int]y (15.4,5)
=X e€Z; - Z,.[f:int — int F Ax. f(fx) : int — int][n | f:2']
=X e€Z, —-Z,. 2zeZ). ([n]|E:2]O)(([n]f:7]f)2)

=X€Z, =57, . \2eZ,. (2 2).

338 15 The Simple Type System

A subtle question remains: What if there are several proofs of the same judge-
ment (which are distinct as trees, not just sequences)? Clearly, in a sensible intrin-
sic semantics, all such proofs must lead to the same meaning for the judgement —
this property is called coherence. For our simply typed language, it is relatively
straightforward to establish coherence, since the type inference rules are syntax-
directed: For each constructor of the abstract syntax, there is a unique rule that
shows how to infer a judgement about a constructed expression from judgements
about its subphrases. Thus there is a one-to-one correspondence between proofs
(viewed as trees) and abstract syntax trees. In Section 16.6, however, when we
consider the intrinsic semantics of subtyping and intersection types, coherence
will become a serious constraint.

In Section 10.5, when we discussed the denotational semantics of normal-order
evaluation for the untyped lambda calculus, we emphasized the distinction be-
tween a closed expression that diverges and one that evaluates to an abstraction
whose applications always diverge; in the language of this chapter, an example
is provided by rec (Af. f) and Ax. (rec (M. f)x, both of type int — int (or,
more generally, of any type of the form § — 6’). In our untyped denotational
semantics, these expressions had the distinct meanings Ly, and tnorm (¢fun LV,)s
respectively. In our intrinsic typed semantics, however, they both have the same
meaning, which is the least element of D — D #. (Analogously, in our extrin-
sic semantics, the results Ly, and tnorm(¢fun Lv;,,) are identified by the partial
equivalence relation P(6 — ¢).)

This raises the fear that the intrinsic semantics might be unsound, in the sense
of Section 2.8. But in fact, it is sound if one restricts the observable phrases to
closed phrases of primitive type (i.e. int and bool) and only observes whether
such a phrase terminates and, if so, its value. It can be shown that, for such
phases, this behavior is determined by their intrinsic semantics: When + e : int,

e=n if and only if [Fe:int] = un
et ifand only if [Fe:int] =1,

and similarly for bool. Thus, if O is an observation of termination or of a value,
and C is a context that takes on primitive type v when filled with any phrase e
satisfying 7w - e : 6, then

[re:0]=[rtF¢€:6]
implies
[F Clel : 7] = [+ Cle'] : 7]
(by the compositionality of the intrinsic semantics), which in turn implies

O(Cle]) = O(C[€']).

15.6 Set-Theoretic Semantics 339

On the other hand, the intrinsic semantics is not fully abstract. This surprising
result is a consequence of two facts:

e Thereisavaluein B, - B, - B,

por bbb = if b = true or ¥/ = true then true else
if b= 1 or b’ = 1 then L else false

(called the parallel or), that is not the meaning of any closed expression of
type bool — bool — bool. Roughly speaking, this is because evaluation for
our language is purely sequential, so that if a function begins to evaluate an
argument of primitive type, it can terminate only if the argument terminates.
In contrast, to evaluate an application of por, one would need to evaluate the
arguments in parallel, terminating if either evaluation terminates with the value
true. (Despite this need for parallelism, por is still a determinate function.)

e There are two closed expressions, both of type (bool — bool — bool) —
bool,

T &f Ap. if p true (rec Ax. x) then

if p (rec Ax. x) true then
if p false false then rec Ax. x else true
else rec Ax. x

else rec Ax. x

T Ap. rec Ax. x,

whose meanings are functions that give distinct results when applied to por,
but give the same result when applied to any other member of the domain
B, —-—B, - B,.

Clearly, T and T” have distinct denotational semantics. But it can be shown that
C[T] and C[T’] have the same semantics for all closed contexts C of primitive
type; the basic reason is that, when T and T” are applied to any expression, they
will yield the same result.

15.6 Set-Theoretic Semantics

At the end of Section 15.2, we remarked that, in the absence of the letrec and rec
constructions, all simply typed expressions of our functional language terminate.
This suggests that the sublanguage where recursive definitions and fixed points
are eliminated should possess an intrinsic semantics in which partially defined
domain elements, and indeed the whole apparatus of an approximation ordering,
play no role.

340 15 The Simple Type System

In fact, there is such an intrinsic semantics, in which types denote ordinary
sets and S — S’ denotes the set of all functions from S to S’. Indeed, it is this
set-theoretic semantics that justifies the use of typed lambda expressions (and
the other nonrecursive constructions of our simply typed functional language) in
ordinary mathematical discourse, as for example in Sections A.3 or 2.5.

It is straightforward to obtain the set-theoretic model by modifying the intrinsic
semantics given in the previous section. Equations for the functions D and D*,
which now map types and contexts into sets, are obtained by dropping the lifting
operations:

D(int) =
D(bool) =
D(9 — 0') =D(8) - D)
D(prod(fy,...,0,-1)) = D(6p) X - x D(On_1)
D(sum(fy, . . . ,6n-1)) = D(6o) + - - - + D(6n—1)
D*(w) }'[D(mv).

Here —, x, +, and [] are given their conventional meanings for sets, as defined
in Sections A.3 and A .4.

The semantic equations for judgements are obtained from those in the previ-
ous section by eliminating the injections ¢4 and the function extensions (—)
(Several equations can then be simplified by [-contraction.)

TY SEM EQ: Constants and Primitive Operations (15.1)
[| true: bool]n = true
[#F 0:int]n =0
[7 + eo + e1:int]n = ([7 F ep: int]n) + ([7 F e1: int]n)
[7 F eo = e1: bool]n = ([F ep: int]n) = ([7 F e1:int]n)
[7 F eo A er:bool]n = if [7 F ep: bool]n then [« F e1: bool]n else false,
TY SEM EQ: Conditional Expressions (15.2)
[| if g then e; else e3 : 6]7
=if [7 F ep : bool]n then |7 F e; :]n else [7 F ez : O]7,
TY SEM EQ: Variables (15.3)

[rFv:0lp=nv when 7 contains v:0,

15.7 Recursive Types 341

TY SEM EQ: — Introduction (15.4)

[tk Xv.e:0— 0)n=XrzeD@). [r,v:0Fe:0][n]|v:z],

TY SEM EQ: — Elimination (15.5)

[rFeoer:0In=([rFeo:0— &n)([rt es:6]n),
TY SEM EQ: Product Introduction (15.6)

[7F {eo,...,en—1): prod(fy,...,0,-1)]n
={([rFeo:6]n,...,[7F en-1:0n_1]n),

TY SEM EQ: Product Elimination (15.7)

[7Fek:6k]n=([rFe:prod(by,...,0h_1)]n)k when k < n,

TY SEM EQ: Sum Introduction (15.8)

[+ Q@ke:sam(by,...,0,—1)]n = (k,[7 + e:6]n) when k£ < n,

TY SEM EQ: Sum Elimination (15.9)

[7 I sumcase e of (eq,...,en—1) : 0]n
= ()\(k, z2)eDb)+---+D(Op—1). [t Fex: 0 — 9]]77z)
([7 F e:sumf(6y,...,0,-1)]n).

The essence of set-theoretic semantics is that no restriction, such as continuity,
is imposed on the notion of function. Because of paradoxes such as Russell’s,
such a semantics is possible only for a sufficiently restrictive typing discipline.

15.7 Recursive Types

In developing types we have tacitly assumed that, like other syntactic phrases,
they are finite. In fact, however, our syntactic development extends smoothly to
infinite types. For example, as defined in Section 11.4, a list of integers is either

.@O0 () or @1 (i,7), where ¢ is an integer and 7 is a list of integers. Thus the type

list int is really an abbreviation for the infinite type
sum(unit, int x
sum(unit, int x
sum(unit, int x

-)))-

