
Chapter 3

Recursion

Recursion is a self referential style of definition commonly used in both math-
ematics and computer science. It is a fundamental programming tool, partic-
ularly important for manipulating data structures.

This book looks at recursion from several points of view. This chapter
introduces the idea by showing how to write recursive functions in computer
programs. Chapter 4 introduces induction, the mathematical technique for
proving properties about recursive definitions, allowing you to use mathematics
to prove the correctness of computer software. Chapter 5 extends induction to
handle recursion over trees. Chapter 9 applies the same ideas to mathematics,
where recursion is used to define sets inductively. You will find examples of
recursion and induction throughout many branches of computer science. In
addition to the examples given through these three chapters, we will study a
larger case study in Chapter 13, where recursion and induction are applied to
the problem of digital circuit design.

The idea in recursion is to break a problem down into two cases: if the
problem is ‘easy’ a direct solution is specified, but if it is ‘hard’ we proceed
through several steps: first the problem is redefined in terms of an easier prob-
lem; then we set aside the current problem temporarily and go solve the easier
problem; and finally we use the solution to the easier problem to calculate the
final result. The idea of splitting a hard problem into easier ones is called the
divide and conquer strategy, and it is frequently useful in algorithm design.

The factorial function provides a good illustration of the process. Often the
factorial function is defined using the clear but informal ‘. . .’ notation:

n! = 1 × 2 × · · · × n

This definition is fine, but the ‘· · · ’ notation relies on the reader’s understanding
to see what it means. An informal definition like this isn’t well suited for
proving theorems, and it isn’t an executable program in most programming
languages1. A more precise recursive definition of factorial consists of the

1Haskell is a very high level programming language, and it actually allows this style:
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following pair of equations:

0 ! = 1

(n + 1) ! = (n + 1) × n !

In Haskell, this would be written as:

factorial :: Int -> Int

factorial 0 = 1

factorial (n+1) = (n+1) * factorial n

The first equation specifies the easy case, where the argument is 0 and the
answer 1 can be supplied directly. The second equation handles the hard case,
where the argument is of the form n + 1. First the function chooses a slightly
easier problem to solve, which is of size n; then it solves for n! by evaluating
factorial n, and it multiplies the value of n! by n + 1 to get the final result.

Recursive definitions consist of a collection of equations that state proper-
ties of the function being defined. There are a number of algebraic properties
of the factorial function, and one of them is used as the second equation of
the recursive definition. In fact, the definition doesn’t consist of a set of com-
mands to be obeyed; it consists of a set of true equations describing the salient
properties of the function being defined.

Programming languages that allow this style of definition are often called
declarative languages, because a program consists of a set of declarations of
properties. The programmer must find a suitable set of properties to declare,
usually via recursive equations, and the programming language implementation
then finds a way to solve the equations. The opposite of a declarative language
is an imperative language, where you give a sequence of commands that, when
obeyed, will result in the computation of the result.

3.1 Recursion Over Lists

For recursive functions on lists, the ‘easy’ case is the empty list [] and the
‘hard’ case is a non-empty list, which can be written in the form (x:xs). A
recursive function over lists has the following general form:

f :: [a] -> type of result

f [] = result for empty list

f (x:xs) = result defined using (f xs) and x

A simple example is the length function, which counts the elements in a
list; for example, length [1,2,3] is 3.

in Haskell you can define factorial n = product [1..n]. Most programming languages,

however, do not allow this, and even Haskell treats the [1..n] notation as a high level

abbreviation that is executed internally using recursion.
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length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

An empty list contains no elements, so length [] returns 0. When the
list contains at least one element, the function calculates the length of the
rest of the list by evaluating length xs and then adds one to get the length
of the full list. We can work out the evaluation of length [1,2,3] using
equational reasoning. This process is similar to solving an algebra problem,
and the Haskell program performs essentially the same calculation when it
executes. Simplifying an expression by equational reasoning is the right way to
‘hand-execute’ a functional program. In working through this example, recall
that [1,2,3] is a shorthand notation for 1:(2:(3:[])).

length [1,2,3]

= 1 + length [2,3]

= 1 + (1 + length [3])

= 1 + (1 + (1 + length []))

= 1 + (1 + (1 + 0))

= 3

It is better to think of recursion as a systematic calculation, as above, than
to try to imagine low-level subroutine operations inside the computer. Text-
books on imperative programming languages sometimes explain recursion by
resorting to the underlying machine language implementation. In a functional
language, recursion should be viewed at a high level, as an equational technique,
and the low-level details should be left to the compiler.

The function sum provides a similar example of recursion. This function
adds up the elements of its list; for example, sum [1,2,3] returns 1+2+3 = 6.
The type of sum reflects the fact that the elements of a list must be numbers if
you want to add them up. The type context ‘Num a =>’ says that a can stand
for any type provided that the numeric operations are defined. Thus sum could
be applied to a list of 32-bit integers, or a list of unbounded integers, or a list
of floating point numbers, or a list of complex numbers, and so on.

The definition has the same form as the previous example. We define the
sum of an empty list to be 0; this is required to make the recursion work, and it
makes sense anyway. It is common to define the base case of functions so that
recursions work properly. This also usually gives good algebraic properties to
the function. (This is the reason that 0 ! is defined to be 1.) For the recursive
case, we add the head of the list x to the sum of the rest of the elements,
computed by the recursive call sum xs.

sum :: Num a => [a] -> a

sum [] = 0

sum (x:xs) = x + sum xs
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The value of sum [1,2,3] can be calculated using equational reasoning:

sum [1,2,3]

= 1 + sum [2,3]

= 1 + (2 + sum [3])

= 1 + (2 + (3 + sum []))

= 1 + (2 + (3 + 0))

= 6

So far, the functions we have written receive a list and return a number.
Now we consider functions that return lists. A typical example is the (++)

function (its name is often pronounced either as ‘append’ or as ‘plus plus’).
This function takes two lists and appends them together into one bigger list.
For example, [1,2,3] ++ [9,8,7,6] returns [1,2,3,9,8,7,6].

Notice that this function has two list arguments. The definition uses recur-
sion over the first argument. It’s easy to figure out the value of [] ++ [a,b,c];
the first list contributes nothing, so the result is simply [a,b,c]. This obser-
vation provides a base case, which is essential to make recursion work: we can
define [] ++ ys = ys. For the recursive case we have to consider an expres-
sion of the form (x:xs) ++ ys. The first element of the result must be the
value x. Then comes a list consisting of all the elements of xs, followed by
all the elements of ys; that list is simply xs++ys. This suggests the following
definition:

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

Working out an example is a good way to check your understanding of the
definition:

[1,2,3] ++ [9,8,7,6]

= 1 : ([2,3] ++ [9,8,7,6])

= 1 : (2 : ([3] ++ [9,8,7,6]))

= 1 : (2 : (3 : ([] ++ [9,8,7,6])))

= 1 : (2 : (3 : [9,8,7,6]))

= 1 : (2 : [3,9,8,7,6])

= 1 : [2,3,9,8,7,6]

= [1,2,3,9,8,7,6]

Once we know the structure of the definition—a recursion over xs—it is
straightforward to work out the equations. The trickiest aspect of writing the
definition of (++) is deciding over which list to perform the recursion. No-
tice that the definition just treats ys as an ordinary value, and never checks
whether it is empty or non-empty. But you can’t always assume that if there
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are several list arguments, the recursion will go over the first one. Some func-
tions perform recursion over the second argument but not the first, and some
functions perform a recursion simultaneously over several list arguments.

The zip function is an example of a function that takes two list arguments
and performs a recursion simultaneously over both of them. This function
takes two lists, and returns a list of pairs of elements. Within a pair, the first
value comes from the first list, and the second value comes from the second
list. For example, zip [1,2,3,4] [’A’, ’*’, ’q’, ’x’] returns [(1,’A’),
(2,’*’), (3,’q’), (4,’x’)]. There is a special point to watch out for: the
two argument lists might have different lengths. In this case, the result will
have the same length as the shorter argument. For example, zip [1,2,3,4]

[’A’, ’*’, ’q’] returns just [(1,’A’), (2,’*’), (3,’q’)] because there
isn’t anything to pair up with the 4.

The definition of zip must do a recursion over both of the argument lists,
because the two lists have to stay synchronised with each other. There are two
base cases, because it’s possible for either of the argument lists to be empty.
There is no need to write a third base case zip [] [] = [], since the first
base case will handle that situation as well.

zip :: [a] -> [b] -> [(a,b)]

zip [] ys = []

zip xs [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

Here is a calculation of the example above. The recursion terminates when the
second list becomes empty; the second base case equation defines the result of
zip [4] [] to be [] even though the first argument is non-empty.

zip [1,2,3,4] [’A’, ’*’, ’q’]

= (1,’A’) : zip [2,3,4] [’*’, ’q’]

= (1,’A’) : ((2,’*’) : zip [3,4] [’q’])

= (1,’A’) : ((2,’*’) : ((3,’q’) : zip [4] []))

= (1,’A’) : ((2,’*’) : ((3,’q’) : []))

= (1,’A’) : ((2,’*’) : [(3,’q’)])

= (1,’A’) : [(2,’*’), (3,’q’)]

= [(1,’A’), (2,’*’), (3,’q’)]

The concat function takes a list of lists and flattens it into a list of elements.
For example, concat [[1], [2,3], [4,5,6]] returns one list consisting of all
the elements in the argument lists; thus the result is [1,2,3,4,5,6].

concat :: [[a]] -> [a]

concat [] = []

concat (xs:xss) = xs ++ concat xss

In working out the example calculation, we just simplify all the applications
of ++ directly. Of course each of those applications entails another recursion,
which is similar to the examples of (++) given above.



52 CHAPTER 3. RECURSION

concat [[1], [2,3], [4,5,6]]

= [1] ++ concat [[2,3], [4,5,6]]

= [1] ++ ([2,3] ++ concat [[4,5,6]])

= [1] ++ ([2,3] ++ [4,5,6])

= [1] ++ [2,3,4,5,6]

= [1,2,3,4,5,6]

The base case for a function that builds a list must return a list, and this
is often simply []. The recursive case builds a list by attaching a value onto
the result returned by the recursive call.

In defining a recursive function f, it is important for the recursion to work
on a list that is shorter than the original argument to f. For example, in the
application sum [1,2,3], the recursion calculates sum [2,3], whose argument
is one element shorter than the original argument [1,2,3]. If a function were
defined incorrectly, with a recursion that is bigger than the original problem,
then it could just go into an infinite loop.

All of the examples we have seen so far perform a recursion on a list that is
one element shorter than the argument. However, provided that the recursion
is solving a smaller problem than the original one, the recursive case can be
anything—it doesn’t necessarily have to work on the tail of the original list.
Often a good approach is to try to cut the problem size in half, rather than
reducing it by one. This organisation often leads to highly efficient algorithms,
so it appears frequently in books on the design and analysis of algorithms. We
will look at the quicksort function, a good example of this technique.

Quicksort is a fast recursive sorting algorithm. The base case is simple:
quicksort [] = []. For a non-empty list of the form (x:xs), we will first
pick one element called the splitter. For convenience that will be x, the first
element in the list. We will then take all the elements of the rest of the list,
xs, which are less than or equal to the splitter. We will call this list the small

elements and define it as a list comprehension [y | y <- xs, y<splitter].
In a similar way we define the list of large elements, which are greater than
the splitter, as [y | y <- xs, y>=splitter]. Now the complete sorted list
consists first of the small elements (in sorted order), followed by the splitter,
followed by the large elements (in sorted order).

quicksort :: Ord a => [a] -> [a]

quicksort [] = []

quicksort (splitter:xs) =

quicksort [y | y <- xs, y<splitter]

++ [splitter]

++ quicksort [y | y <- xs, y>=splitter]

It is interesting to compare this definition with a conventional one in an
imperative language; see any standard book on algorithms.

Exercise 1. Write a recursive function copy :: [a] -> [a] that copies its
list argument. For example, copy [2] ⇒[2].
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Exercise 2. Write a function inverse that takes a list of pairs and swaps the
pair elements. For example,

inverse [(1,2),(3,4)] ==> [(2,1),(4,3)]

Exercise 3. Write a function

merge :: Ord a => [a] -> [a] -> [a]

which takes two sorted lists and returns a sorted list containing the ele-
ments of each.

Exercise 4. Write (!!), a function that takes a natural number n and a list
and selects the nth element of the list. List elements are indexed from
0, not 1, and since the type of the incoming number does not prevent it
from being out of range, the result should be a Maybe type. For example,

[1,2,3]!!0 ==> Just 1

[1,2,3]!!2 ==> Just 3

[1,2,3]!!5 ==> Nothing

Exercise 5. Write a function lookup that takes a value and a list of pairs,
and returns the second element of the pair that has the value as its first
element. Use a Maybe type to indicate whether the lookup succeeded.
For example,

lookup 5 [(1,2),(5,3)] ==> Just 3

lookup 6 [(1,2),(5,3)] ==> Nothing

Exercise 6. Write a function that counts the number of times an element
appears in a list.

Exercise 7. Write a function that takes a value e and a list of values xs and
removes all occurrences of e from xs.

Exercise 8. Write a function

f :: [a] -> [a]

that removes alternating elements of its list argument, starting with the
first one. For examples, f [1,2,3,4,5,6,7] returns [2,4,6].

Exercise 9. Write a function extract :: [Maybe a] -> [a] that takes a
list of Maybe values and returns the elements they contain. For example,
extract [Just 3, Nothing, Just 7] = [3, 7].

Exercise 10. Write a function

f :: String -> String -> Maybe Int

that takes two strings. If the second string appears within the first, it
returns the index identifying where it starts. Indexes start from 0. For
example,

f "abcde" "bc" ==> Just 1

f "abcde" "fg" ==> Nothing


