
Chapter 4

Induction

A common type of problem is to prove that an object x has some property
P . The mathematical notation for this is P (x), where P stands for predicate
(or property). For example, if x is 6 and P (x) is the predicate ‘x is an even
number’, then we could express the statement ‘6 is an even number’ with the
shorthand mathematical statement P (6).

Many computer science applications require us to prove that all the ele-
ments of a set S have a certain property P . The statement ‘for any element x
in the set S the predicate P holds for x’ can be written as

∀x ∈ S . P (x).

Statements like this can be used to assert properties of data: for example, we
could state that every item in a database has a certain property. They can also
be used to describe the behaviour of computer programs. For example, P (n)
might be a statement that a loop computes the correct result if it terminates
after n iterations, and the statement ∀n ∈ N . P (n) says that the loop is correct
if it terminates after any number of iterations. N denotes the set of natural
numbers, so n ∈ N just says that n is a natural number, and the complete
expression ∀n ∈ N . P (n) says that for any natural number n, the predicate
P (n) holds.

One approach to proving an assertion about all the elements of a set is to
write out a separate direct proof for each element of the set. That would be
all right if the set were small. For example, to prove that all the elements of
the set {4, 6} are even, you could just prove that 4 is even and also that 6 is
even. However, this direct approach quickly becomes tedious for large sets: to
prove that all the elements of {2, 4, 6, . . . , 1000} are even, you would need 500
separate proofs! Even worse, the brute-force method doesn’t work at all—even
in principle—for infinite sets, because proofs are always required to be finitely
long.

Induction is a powerful method for proving that every element of a set has
a certain property. Induction is a valuable technique, because it is not tedious

61

62 CHAPTER 4. INDUCTION

even if the set is large, and it works even for countably infinite sets. Induction is
used frequently in computer science applications. This chapter shows you how
inductive proofs work and gives many examples, including both mathematical
and computing applications. We will use two forms of induction: mathemat-
ical induction for proving properties about natural numbers, and structural

induction for proving properties about lists.

4.1 The Principle of Mathematical Induction

Induction is used to prove that a property P (x) holds for every element of a set
S. In this section, we will restrict the set S to be the set N of natural numbers;
later we will generalise induction to handle more general sets. Instead of proving
P (x) separately for every x, induction relies on a systematic procedure: you
just have to prove a few facts about the property P , and then a theorem called
the Principle of Mathematical Induction allows you to conclude ∀x ∈ N . P (x).

The basic idea is to define a systematic procedure for proving that P holds
for an arbitrary element. To do this, we must prove two statements:

1. The base case P (0) says that the property P holds for the base element
0.

2. The inductive case P (i) → P (i + 1) says that if P holds for an arbitrary
element i of the set, then it must also hold for the successor element i+1.
The symbol → is read as implies.

Because every element of the set of natural numbers can be reached by start-
ing with 0 and repeatedly adding 1, you can establish that P holds for any
particular element using a finite sequence of steps. Given that P (0) holds (the
base case) and that P (0) → P (1) (an instance of the inductive case), we can
conclude that P (1) also holds. This is a simple example of logical inference,
which will be studied in more detail in the chapters on logic. The same pro-
cedure can be used sytematically to prove P (i) for any element of the natural
numbers. For example, P (4) can be proved using the following steps (where
the ∧ symbol denotes and):

Conclusion Justification
P (0) the base case
P (1) P (0) → P (1) ∧ P (0)
P (2) P (1) → P (2) ∧ P (1)
P (3) P (2) → P (3) ∧ P (2)
P (4) P (3) → P (4) ∧ P (3)

Given any element k of N , you can prove P (k) using this strategy, and the
proof will be k+1 lines long. We have not yet used the Principle of Mathemat-
ical Induction; we have just used ordinary logical reasoning. However, proving
P (k) for an arbitrary k is not the same as proving ∀k ∈ N . P (k), because

4.2. EXAMPLES OF INDUCTION ON NATURAL NUMBERS 63

there are an infinite number of values of k, so the proof would be infinitely
long. The size of a proof must always be finite.

What the Principle of Mathematical Induction allows us to conclude is that
P holds for all the elements of N , even if there is an infinite number of them.
Thus it introduces something new—it isn’t just a macro that expands out into
a long proof.

Theorem 5 (Principle of Mathematical Induction). Let P (x) be a predicate
that is either true or false for every element of the set N of natural numbers.
If P (0) is true and P (n) → P (n + 1) holds for all n ≥ 0, then ∀x ∈ N . P (x)
is true.

This theorem can be proved using axiomatic set theory, which is beyond the
scope of this book. For most applications in computer science, it is sufficient
to have an intuitive understanding of what the theorem says and to have a
working understanding of how to use it in proving other theorems.

The proof of the base case will usually turn out to be a straightforward
calculation.

The expression P (n) → P (n + 1) means that ‘if P (n) is true then so is
P (n + 1)’. We can establish this by temporarily assuming P (n), and then—
in the context of this assumption—proving P (n + 1). The assumption P (n) is
called the induction hypothesis. It is important to understand that assuming the
induction hypothesis does not actually mean that it is true! All that matters is
that if the assumption P (n) enables us to prove P (n+1), then the implication
P (n) → P (n + 1) holds. We will study logical inference in more detail in
Chapter 6.

4.2 Examples of Induction on Natural Numbers

There is a traditional story about Gauss, one of the greatest mathematicians
in history. In school one day the teacher told the class to work out the sum
1 + 2 + · · · + 100. After a short time thinking, Gauss gave the correct answer—
5050—long before it would have been possible to work out all the additions.
He had noticed that the sum can be arranged into pairs of numbers, like this:

(1 + 100) + (2 + 99) + (3 + 98) + · · · + (50 + 51)

The total of each pair is 101, and there are 50 of the pairs, so the result is
50 × 101 = 5050.

Methods like this can often be used to save time in computing, so it is
worthwhile to find a solution to the general case of this problem, which is the
sum

n�

i=1

i = 1 + 2 + · · · + n.

64 CHAPTER 4. INDUCTION

· · · · �
· · · � �
· · � � �
· � � � �

Figure 4.1: Geometric Interpretation of Sum

If n is even, then we get n

2 pairs that all total to n+1, so the result is n

2 ×(n+1) =
n×(n+1)

2 . If n is odd, we can start from 0 instead of 1; for example,

7�

i=0

i = (0 + 7) + (1 + 6) + (2 + 5) + (3 + 4).

In this case there are n+1
2 pairs each of which totals to n, so the result is again

n×(n+1)
2 . For any natural number n, we end up with the result

n�

i=0

i =
n × (n + 1)

2
.

This formula is useful because it reduces the computation time required. For
example, if n is 1000 then it would take 999 additions to work out the sum-
mation by brute force, but the formula always requires just one addition, one
multiplication, and one division.

Figure 4.1 shows another way to understand the formula. The rectangle is
covered half by dots and half by stars. The number of stars is 1+2+3+4, and

the area of the rectangle is 4 × (4 + 1), so the total number of stars is 4×(4+1)
2 .

So far we have only guessed the general formula for
�

n

i=0 i, and we have
considered two ways of understanding it. The next step is to prove that this
formula always gives the right answer, and induction provides a way to do it.

Theorem 6.

∀n ∈ N .

n�

i=0

i =
n × (n + 1)

2

Proof. Define the property P as follows:

P (n) =

�
n�

i=0

i =
n × (n + 1)

2

�

Thus the aim is to prove that

∀n ∈ N . P (n)

and we proceed by induction on n.

4.2. EXAMPLES OF INDUCTION ON NATURAL NUMBERS 65

Base case. We need to prove P (0).

0�

i=0

i = 0

=
0 × (0 + 1)

2

Thus we have established the property P (0).

Induction case. The aim is to prove that P (n) → P (n + 1), and we will prove
this implication by assuming P (n) (this is called the induction hypothesis) and
then using that assumption to prove P (n + 1). We start by writing out in
full detail the assumption and the aim of the proof. Assume for an arbitrary
natural number n that

n�

i=0

i =
n × (n + 1)

2
.

The aim is to show (for this particular value of n) that

n+1�

i=0

i =
(n + 1) × (n + 2)

2
.

We do this by starting with the left-hand side of the equation and using algebra
to transform it into the right-hand side. The first step uses the assumption
given above. This is called the induction hypothesis.

n+1�

i=0

i =

n�

i=0

i + (n + 1)

=
n × (n + 1)

2
+ (n + 1)

=
n × (n + 1)

2
+

2 × (n + 1)

2

=
n × (n + 1) + 2 × (n + 1)

2

=
(n + 1) × (n + 2)

2

Now we have established that

�
n�

i=0

i =
n × (n + 1)

2

�

→

�
n+1�

i=0

i =
(n + 1) × (n + 2)

2

�

.

That is,

P (n) → P (n + 1).

66 CHAPTER 4. INDUCTION

Use the principle of induction. To summarise, we have proved the base case
P (0), and we have proved the induction case P (n) → P (n + 1). Therefore the
principle of induction allows us to conclude that the theorem ∀n ∈ N.P (n) is
true.

Exercise 1. Let a be an arbitrary real number. Prove, for all natural numbers
m and n, that am×n = (am)n.

Exercise 2. Prove that the sum of the first n odd positive numbers is n2.

Exercise 3. Prove that
�

n

i=1 ai = (an+1 − 1)/(a − 1), where a is a real
number and a �= 1.

4.3 Induction and Recursion

Induction is a common method for proving properties of recursively defined
functions. The factorial function, which is defined recursively, provides a good
example of an induction proof.

factorial :: Natural → Natural

factorial 0 = 1
factorial (n + 1) = (n + 1) ∗ factorial n

A common problem in computer science is to prove that a program com-
putes the correct answer. Such a theorem requires an abstract mathematical
specification of the problem, and it has to show that for all inputs, the pro-
gram produces the same result that is defined by the specification. The value
of n! (factorial of n) is defined as the product of all the natural numbers from
1 through n; the standard notation for this is

�
n

i=1 i. The following theorem
says that the factorial function as defined above actually computes the value
of n!.

Theorem 7. For all natural numbers n, factorial n =
�

n

i=1 i.

Proof. Induction on n. The base case is

factorial 0
= 1 { factorial.1 }

=
�0

1 i { def. of
�

}

For the induction case, it is necessary to prove that

�

factorial n =

n�

i=1

i

�

→

�

factorial (n + 1) =

n+1�

i=1

i

�

.

4.4. INDUCTION ON PEANO NATURALS 67

This is done by assuming the left side as the inductive hypothesis: for a par-
ticular n, the hypothesis is factorial n =

�
n

i=1 i. Given this assumption, we

must prove that factorial (n + 1) =
�

n+1
i=1 i.

factorial (n + 1)
= (n + 1) × factorial n { factorial.2 }
= (n + 1) ×

�
n

i=1 i { hypothesis }

=
�

n+1
i=1 i { def.

�
}

Exercise 4. (This problem is from [12], where you can find many more.) The
nth Fibonacci number is defined as follows:

fib :: Integer -> Integer

fib 0 = 0

fib 1 = 1

fib (n+2) = fib n + fib (n+1)

The first few numbers in this famous sequence are 0, 1, 1, 2, 3, 5, Prove
the following:

n�

i=1

fib i = fib (n + 2) − 1

4.4 Induction on Peano Naturals

The Peano representation of natural numbers is a rich source of examples for
induction. Actually, it’s hard to do anything at all in Peano arithmetic without
induction. For example, how do we even know that a natural number is equal
to itself? The following theorem says so, and its proof requires induction.

Theorem 8 (Self equality). ∀x :: Nat. equals x x = True

Proof. Base case:

equals Zero Zero

= True { equals.1 }

For the inductive case, assume that equals x x = True. We must prove that
equals (Succ x) (Succ x) = True.

equals (Succ x) (Succ x)
= equals x x { equals.2 }
= True { hypothesis }

68 CHAPTER 4. INDUCTION

This proof illustrates a subtle issue. When we are using the languages of
English and mathematics to talk about natural numbers, we can assume that
anything is equal to itself. We don’t normally prove theorems like x = x.
However, that is not what we have just proved: the theorem above says that
x is the same as itself according to equals, which is defined inside the Peano
system. Therefore the proof also needs to work inside the Peano system; hence
the induction.

We’ll look at a few more typical Peano arithmetic theorems, both to see how
the Peano natural numbers work and to get more practice with induction. The
following theorem says, in effect, that (x + y) − x = y. In elementary algebra,
we would prove this by calculating (x + y) − x = (x − x) + y = 0 + y = y. The
point here, however, is that the addition and subtraction are being performed
by the recursive add and sub functions, and we need to prove the theorem in
terms of these functions.

Theorem 9. sub (add x y) x = y

Proof. Induction over x. The base case is

sub (add Zero y) Zero
= sub y Zero { add.1 }
= y { sub.1 }

For the inductive case, assume sub (add x y) x = y; the aim is to prove
sub (add (Succ x) y) (Succ x) = y.

sub (add (Succ x) y) (Succ x)
= sub (Succ (add x y)) (Succ x) { add.2 }
= sub (add x y) x { sub.3 }
= y { hypothesis }

The proof above happens to go through directly and easily, but many simple
theorems do not. For example, it is considerably harder to prove (x+y)−y = x
than to prove (x + y) − x = y. Even worse, there is no end to such theorems.
Instead of continuing to choose theorems based on their ease of proof, it is better
to proceed systematically by developing the standard properties of natural
numbers, such as associativity and commutativity. The attractive feature of
the Peano definitions is that all these laws are theorems; the only definitions
we need are the basic ones given already. It is straightforward to prove that
addition is associative, so we begin with that property.

Theorem 10 (add is associative). add x (add y z) = add (add x y) z

Proof. Induction over x. The Base case is

4.4. INDUCTION ON PEANO NATURALS 69

add Zero (add y z)
= add y z { add.1 }
= add (add Zero y) z { add.1 }

Inductive case. Assume add x (add y z) = add (add x y) z. Then

add (Succ x) (add y z)
= Succ (add x (add y z)) { add.2 }
= Succ (add (add x y) z) { hypothesis }
= add (Succ (add x y)) z { add.2 }
= add (add (Succ x) y) z { add.2 }

Next, it would be good to prove that addition is commutative: x + y =
y + x. To prove this, however, a sequence of simpler theorems is needed—each
providing yet another example of induction.

First we need to be able to simplify additions where the second argument is
Zero. We know already that add Zero x = x; in fact, this is one of the Peano
axioms. It is not an axiom that add x Zero = x; that is a theorem requiring
proof.

Theorem 11. add x Zero = x

Proof. Induction over x. The base case is

add Zero Zero

= Zero { add.1 }

For the inductive case, we assume add x Zero = x. Then

add (Succ x) Zero
= Succ (add x Zero) { add.2 }
= Succ x { hypothesis }

The next theorem allows us to move a Succ from one argument of an addi-
tion to the other. It says, in effect, that (x + 1) + y = x + (y + 1). That may
not sound very dramatic, but many proofs require the ability to take a little
off one argument and add it onto the other.

Theorem 12. add (Succ x) y = add x (Succ y)

Proof. Induction over x. Base case:

add (Succ Zero) y
= Succ (add Zero y) { add.2 }
= Succ y { add.1 }
= add Zero (Succ y) { add.1 }

70 CHAPTER 4. INDUCTION

Inductive case:

add (Succ (Succ x)) y
= Succ (add (Succ x) y) { add.2 }
= Succ (add x (Succ y)) { hypothesis }
= add (Succ x) (Succ y) { add.2 }

Now we can prove that Peano addition is commutative.

Theorem 13 (add is commutative). add x y = add y x

Proof. Induction over x. Base case:

add Zero y
= y { add.1 }
= add y Zero { Theorem 11 }

Inductive case: assume that add x y = add y x. Then

add (Succ x) y
= Succ (add x y) { add.2 }
= Succ (add y x) { hypothesis }
= add (Succ y) x { add.2 }
= add y (Succ x) { Theorem 12 }

4.5 Induction on Lists

Lists are one of the most commonly used data structures in computing, and
there is a large family of functions to manipulate them. These functions are
typically defined recursively, with a base case for empty lists [] and a recursive
case for non-empty lists, i.e. lists of the form (x : xs). List induction is the
most common method for proving properties of such functions.

Before going on, we discuss some practical techniques that help in coping
with theorems. If you aren’t familiar with them, mathematical statements
sometimes look confusing, and it is easy to develop a bad habit of skipping
over the mathematics when reading a book. Here is some advice on better
approaches; we will try to illustrate the advice in a concrete way in this section,
but these methods will pay off throughout your work in computer science, not
just in the section you’re reading right now.

• When you are faced with a new theorem, try to understand what it means
before trying to prove it. Restate the main idea in English.

4.5. INDUCTION ON LISTS 71

• Think about what applications the theorem might have. If it says that
two expressions are the same, can you think of situations where there
might be a practical advantage in replacing the left-hand side by the
right-hand side, or vice versa? (A common situation is that one side of
the equation is more natural to write, and the other side is more efficient.)

• Try out the theorem on some small examples. Theorems are often stated
as equations; make up some suitable input data and evaluate both sides
of the equation to see that they are the same.

• Check what happens in boundary cases. If the equation says something
about lists, what happens if the list is empty? What happens if the list
is infinite?

• Does the theorem seem related to other ones? Small theorems about
functions—the kind that are usually proved by induction—tend to fit
together in families. Noticing these relationships helps in understanding,
remembering, and applying the results.

The principle of list induction states a technique for proving properties
about lists. It is similar to the principle of mathematical induction; the main
difference is that the base case is the empty list (rather than 0) and the induc-
tion case uses a list with one additional element (x:xs) rather than n + 1. List
induction is a special case of a more general technique called strutural induc-

tion. Induction over lists is used to prove that a proposition P (xs) holds for
every list xs.

Theorem 14 (Principle of list induction). Suppose P (xs) is a predicate on
lists of type [a], for some type a. Suppose that P ([]) is true (this is the base
case). Further, suppose that if P (xs) holds for arbitrary xs :: [a], then P (x : xs)
also holds for arbitrary x :: a. Then P (xs) holds for every list xs that has finite
length.

Thus the base case is to prove that the predicate holds for the empty list,
and the inductive case is to prove that if P holds for a list xs, then it must
also hold for any list of the form x : xs. When the base and inductive case
are established, then the principle of induction allows us to conclude that the
predicate holds for all finite lists.

Notice that the principle of list induction cannot be used to prove theorems
about infinite lists. This point is discussed in Section 4.8.

We will now work through a series of examples where induction is used to
prove theorems about the properties of recursive functions over lists.

The sum function takes a list of numbers and adds them up. It defines the
sum of an empty list to be 0, and the sum of a non-empty list is computed by
adding the first number onto the sum of all the rest.

sum :: Num a => [a] -> a

72 CHAPTER 4. INDUCTION

sum [] = 0

sum (x:xs) = x + sum xs

The following theorem states a useful fact about the relationship between
two functions: sum and ++. It says that if you have two lists, say xs and
ys, then there are two different ways to compute the combined total of all the
elements. You can either append the lists together with ++, and then apply
sum, or you can apply sum independently to the two lists, and add the two
resulting numbers.

Theorems of this sort are often useful for transforming programs to make
them more efficient. For example, suppose that you have a very long list to
sum up, and two computers are available. We could use parallelism to cut the
execution time almost in half. The idea is to split up the long list into two
shorter ones, which can be summed in parallel. One quick addition will then
suffice to get the final result. This technique is an example of the divide and
conquer strategy for improving the efficiency of algorithms. Obviously there
is more to parallel computing and program optimisation than we have covered
in this paragraph, but theorems like the one we are considering really do have
practical applications.

Theorem 15. sum (xs++ys) = sum xs+ sum ys

The proof of this theorem is a typical induction over lists, and it provides a
good model to follow for future problems. The justifications used in the proof
steps are written in braces {. . .}. Many of the justifications cite the definition
of a function, along with the number of the equation in the definition; thus
{ (++).1 } means ‘this step is justified by the first equation in the definition of
++’. The most crucial step in an induction proof is the one where the induction
hypothesis is used; the justification cited for that step is { hypothesis }.

Proof. Induction over xs. The base case is

sum ([] ++ ys)
= sum ys { (++).1 }
= 0 + sum ys { 0 + x = x }
= sum [] + sum ys { sum.1 }

The inductive case is

sum ((x : xs)++ys)
= sum (x : (xs++ys)) { (++).2 }
= x + sum (xs++ys) { sum.2 }
= x + (sum xs+ sum ys) { hypothesis }
= (x + sum xs) + sum ys { +. is associative }
= sum (x : xs) + sum ys { sum.2 }

4.5. INDUCTION ON LISTS 73

Many theorems describe a relationship between two functions; the previous
one is about the combination of sum and (++), while this one combines length
with (++). Its proof is left as an exercise.

Theorem 16. length (xs++ys) = length xs + length ys

We now consider several theorems that state crucial properties of the map
function. These theorems are important in their own right, and they are com-
monly used in program transformation and compiler implementation. They
are also frequently used to justify steps in proofs of more complex theorems.

The following theorem says that map is ‘length preserving’: when you apply
map to a list, the result has the same length as the input list.

Theorem 17. length (map f xs) = length xs

Proof. Induction over xs. The base case is

length (map f [])
= length [] { map.1 }

For the inductive case, assume length (map f xs) = length xs. Then

length (map f (x : xs))
= length (f x : map f xs) { map.2 }
= 1 + length (map f xs) { length.2 }
= 1 + length xs { hypothesis }
= length (x : xs) { length.2 }

The next theorem is reminiscent of Theorem 15; it says you can get the
same result by either of two methods: (1) mapping a function over two lists
and then appending the results together, and (2) appending the input lists and
then performing one longer map over the result. Its proof is yet another good
example of induction, and is left as an exercise.

Theorem 18. map f (xs++ys) = map f xs ++ map f ys

One of the most important properties of map is expressed precisely by the
following theorem. Suppose that you have two computations to perform on
all the elements of a list. First you want to apply g to an element, getting
an intermediate result to which you want to apply f . There are two methods
for doing the computation. The first method uses two separate loops, one to
perform g on every element and the second loop to perform f on the list of
intermediate results. The second method is to use just one loop, and each
iteration performs the g and f applications in sequence. This theorem is used
commonly by optimising compilers, program transformations (both manual and
automatic), and it’s also vitally important in parallel programming. Again, we
leave the proof as an exercise.

74 CHAPTER 4. INDUCTION

Theorem 19. (map f . map g) xs = map (f.g) xs

For a change of pace, we now consider an intriguing theorem. Once you
understand what it says, however, it becomes perfectly intuitive. (The notation
(1+) denotes a function that adds 1 to a number.)

Theorem 20. sum (map (1+) xs) = length xs + sum xs

Proof. Induction over xs. The base case is

sum (map (1+) [])
= sum [] { map.1 }
= 0 + sum [] { 0 + x = x }
= length [] + sum [] { length.1 }

For the inductive case, assume sum (map (1+) xs) = length xs + sum xs.
Then

sum (map (1+) (x : xs))
= sum ((1 + x) : map (1+) xs) { map.2 }
= (1 + x) + sum (map (1+) xs) { sum.2 }
= (1 + x) + (length xs + sum xs) { hypothesis }
= (1 + length xs) + (x + sum xs) { (+).algebra }
= length (x : xs) + sum (x : xs) { length.2, sum.2 }

The foldr function is important because it expresses a basic looping pattern.
There are many important properties of foldr and related functions. Here is
one of them:

Theorem 21. foldr (:) [] xs = xs

Some of the earlier theorems may be easy to understand at a glance, but
that is unlikely to be true for this one! Recall that the foldr function takes
apart a list and combines its elements using an operator. For example,

foldr (+) 0 [1, 2, 3] = 1 + (2 + (3 + 0))

Now, what happens if we combine the elements of the list using the cons oper-
ator (:) instead of addition, and if we use [] as the initial value for the recursion
instead of 0? The previous equation then becomes

foldr (:) [] [1, 2, 3] = 1 : (2 : (3 : []))

= [1, 2, 3].

We ended up with the same list we started out with, and the theorem says this
will always happen, not just with the example [1, 2, 3] used here.

Proof. Induction over xs. The base case is

4.5. INDUCTION ON LISTS 75

foldr (:) [] []
= [] { foldr.1 }

Now assume that foldr (:) [] xs = xs; then the inductive case is

foldr (:) [] (x : xs)
= x : foldr (:) [] xs { foldr.2 }
= x : xs { hypothesis }

Suppose you have a list of lists, of the form xss = [xs0, xs1, . . . , xsn]. All
of the lists xsi must have the same type [a], and the type of xss is [[a]]. We
might want to apply a function f :: a → b to all the elements of all the lists,
and build up a list of all the results. There are two different ways to organise
this computation:

• Use the concat function to make a single flat list of type [a] containing
all the values, and then apply map f to produce the result with type [b].

• Apply map f separately to each xsi, by computing map (map f) xss,
producing a list of type [[b]]. Then use concat to flatten them into a
single list of type [b].

The following theorem guarantees that both approaches produce the same re-
sult. This is significant because there are many practical situations where it
is more convenient to write an algorithm using one approach, yet the other is
more efficient.

Theorem 22. map f (concat xss) = concat (map (map f) xss)

Proof. Proof by induction over xss. The base case is

map f (concat [])
= map f [] { concat.1 }
= [] { map.1 }
= concat [] { concat.1 }
= concat (map (map f) []) { map.1 }

Assume that map f (concat xss) = concat (map (map f) xss). The inductive
case is

map f (concat (xs : xss))
= map f (xs ++ concat xss) { concat.2 }
= map f xs ++ map f (concat xss) { Theorem 18 }
= map f xs ++ concat (map (map f) xss) { hypothesis }
= concat (map f xs : map (map f) xss) { concat.2 }
= concat (map (map f) (xs : xss)) { map.2 }

76 CHAPTER 4. INDUCTION

Sometimes you don’t need to perform an induction, because a simpler proof
technique is already available. Here is a typical example:

Theorem 23. length (xs++(y : ys)) = 1 + length xs + length ys

This theorem could certainly be proved by induction (and that might be
good practice for you!) but we already have a similar theorem which says that
length (xs++ys) = length xs + length ys. Instead of starting a new induction
completely afresh, it’s more elegant to carry out a few steps that enable us to
apply the existing theorem. Just as reuse of software is a good idea, reuse of
theorems is good style in theoretical computer science.

length (xs ++ (y : ys))
= length xs + length (y : ys)
= length xs + (1 + length ys)
= 1 + length xs + length ys

Exercise 5. Prove Theorem 16.

Exercise 6. Prove Theorem 18.

Exercise 7. Prove Theorem 19.

Exercise 8. Recall Theorem 20, which says

sum (map (1+) xs) = length xs + sum xs.

Explain in English what this theorem says. Using the definitions of the
functions involved (sum, length and map), calculate the values of the left
and right-hand sides of the equation using xs = [1, 2, 3, 4].

Exercise 9. Invent a new theorem similar to Theorem 20, where (1+) is re-
placed by (k+). Test it on one or two small examples. Then prove your
theorem.

4.6 Functional Equality

Many theorems used in computer science (including most of the ones in this
chapter) say that two different algorithms are always guaranteed to produce
the same result. The algorithms are defined as functions, and the theorem says
that when you apply two different functions to the same argument, they give
the same result.

It is simpler and more direct simply to say that the two functions are equal.
However, this raises an interesting question: what does it mean to say f = g
when f and g are functions? (This issue will be revisited in Chapter 11.) There
are at least two standard notions of functional equality that are completely
different from each other, so it pays to be careful!

4.6. FUNCTIONAL EQUALITY 77

• Intensional equality. Two functions f and g are intensionally equal if
their definitions are identical. This means, of course, that the functions
are not equal if their types are different. If they are computer programs,
testing for intensional equality involves comparing the source programs,
character by character. The functions are intensionally equal if their
definitions look the same.

• Extensional equality. Two functions f and g are extensionally equal if
they have the same type a → b and f x = g x for all well typed arguments
x :: a. More precisely, f = g if and only if

∀x :: a . f x = g x.

The functions are extensionally equal if they deliver the same results
when given the same inputs.

In computer science we are almost always interested in extensional equality.
A typical situation is that we have an algorithm, expressed as a function f ,
and the aim is to replace it by a more efficient function g. This will not affect
the correctness of the program as long as f and g are extensionally equal, but
they are obviously not intensionally equal.

Some of the theorems given in the previous section can be stated in a simpler
fashion using extensional equality. For example, recall Theorem 17, which says
that map doesn’t change the length of its argument:

length (map f xs) = length xs

A more direct way to state the same fact is to omit the irrelevant argument xs,
and just say that these two functions are equal:

length . (map f) = length

To prove such a theorem of the form f = g, we need only prove that
∀x :: a. f x = g x, and this can be achieved by choosing an arbitrary x :: a,
and proving the equation f x = g x.

Theorem 24. foldr (:) [] = id

Proof. The equation states that two functions are equal: the right-hand side, id,
is a function, and the left-hand side is a partial application (foldr takes three
arguments, but it has been applied to only two), so that is also a function.
Therefore we use the definition of extensional equality of functions; thus we
choose an arbitrary list xs, and we must prove that foldr (:) [] xs = id xs = xs.
Now the right-hand side is just xs, by the definition of id, so the equation is
proved by Theorem 21.

Theorem 25. map f . concat = concat (map (map f)).

