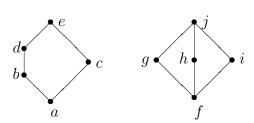
Introducción a la Lógica y la Computación - Estructuras de orden 21/08/2013: Práctico 3

- 1. Compruebe los siguientes isomorfismos
 - a) $(D_6, |) \cong (\mathcal{P}(\{a, b\}), \subseteq).$
 - b) $(D_{30}, |) \cong (\mathcal{P}(\{a, b, c\}), \subseteq).$
- 2. Determine si es posible encontrar dentro del poset $(\mathcal{P}(\{a,b,c\}),\subseteq)$ un subconjunto que visto como poset sea isomorfo a D_{18}
- 3. La siguiente tabla fue llenada parcialmente. Da los valores de $\sup\{x,y\}$ para x e y en cierto poset (S, \leq) . Por ejemplo $\sup\{b,c\}=d$.
 - a) Llene el resto de la tabla.
 - b) ¿Cuál es el mínimo y el máximo de S?
 - c) Muestre que $f \leq c \leq d \leq e$.
 - d) Dibuje el diagrama de Hasse asociado a (S, \preceq) .

\sup	a	b	c	d	e	f
\overline{a}		e	\overline{a}	e	e	a
b			d	d	e	b
c				d	e	c
d					e	d
e						e
f						

B

- 4. Supongamos que un poset tiene la siguiente propiedad: para todo $a, b \in P$ se tiene que $\sup\{a,b\}$ existe. ¿Podemos concluir que $\sup(S)$ existe para cualquier S finito?
- 5. a) Relacione los siguientes diagramas de Hasse con los posets $(\{1,2,3,4,6,12\},|)$ y $(\{1,2,3,4,6\},|)$.
 - b) Determine como y cuando están definidas las operaciones \land , \lor en esos posets. Considere todos los pares de elementos posibles.
 - c) ¿Cuáles de los anteriores posets son posets reticulados?
 - d) Calcular $4 \wedge (2 \vee 3)$ en ambos posets.
 - e) Determinar un subconjunto de $(\mathcal{P}(\{a,b,c\}),\subseteq)$ cuyo diagrama de Hasse sea B.
- 6. Para cada una de las siguientes propiedades, dé diagramas de Hasse representando posets reticulados que la satisfagan, y que no la satisfagan, en el caso de existir.
 - (a) $(x \wedge y = y) \vee (x \wedge y = x)$
 - $b) \ x \wedge y = y$
 - c) $\exists x \ x \land y = x$
- 7. Demostrar que en todo poset reticulado se cumple $x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z)$.
- 8. En cada uno de los siguientes diagramas encuentre x, y y z tales que
 - $a) \ x \lor (y \land z) < (x \lor y) \land (x \lor z)$
 - b) $(x \wedge y) \vee (x \wedge z) < x \wedge (y \vee z)$



9. Determine cuantos isomorfismos hay de $(\mathcal{P}(\{a,b,c\}),\subseteq)$ en sí mismo.