CLASE 30/08/2013

ÁLGEBRAS DE BOOLE

Es un $(B, \vee, \wedge, 0^B, 1^B, ')$ tal que $(B, \vee, \wedge, 0^B, 1^B)$ es un reticulado acotado y distributivo, y para todo $x \in B$ se tiene que x' es el complemento de x.

- \Longrightarrow EJEMPLO: $(\mathcal{P}(X), \cup, \cap, \emptyset, X,^c)$ es un álgebra de Boole, esto es, definimos $A' = A^c$
- \implies $(D_n, mcm, mcd, 1, n, ')$ es un álgebra de Boole si n es producto de primos distintos,
- \implies ¿cómo se define x'? Es el producto de los primos que no están en x: $x' = \frac{n}{x}$
- \Longrightarrow PRUEBA de la distributividad de D_n

Sea $\{d, a, b, c, m\}$ el M_3 . Si $d = mcd\{a, b\}$ y $m = mcm\{a, b\}$,

entonces ab = md. Idem con a, c. Así probar que b = c.

⇒ Isomorfismo de Álgerbas de Boole: es un isomorfismo de reticulados (como EA) que además preserva el máximo, mínimo y el complemento. Esto es:

Si
$$\langle B, \bigotimes, (0, 1, 1) \rangle$$
 y $\langle B', \bigotimes', (0, 1, 1)' \rangle$ son AB, y $f : B \to B'$ entonces

 $\Longrightarrow f$ es iso de AB si es iso de reticulados y

$$f(0_B) = 0_{B'}, f(1_B) = 1_{B'}$$

$$f(x') = x''$$

- ⇒ Vimos que basta que sea iso de poset para ser iso de reticulados
- ⇒ PREGUNTA: ¿Basta que sea iso de opset para ser iso de Álgebras de Boole?
- ⇒ NOTAR: Iso de estructura algebraica inplica iso de poset.

LEMA:

 $\langle B, \bigotimes, \bigotimes, 0, 1, ' \rangle$ y $\langle B', \bigotimes', \bigotimes', 0', 1', '' \rangle$ Álgebras de Boole.

Si $f: B \to B'$ es un isomorfismo de poset, entonces también es un iso de Álgebras de Boole

⇒ Siguiendo con la idea de las Álgebras de Boole como abstracción de conjuntos:

LEMA: LEYES DE De MORGAN

En toda AB valen las leyes:

$$(x \wedge y)' = x' \vee y'$$
 $(x \vee y)' = x' \wedge y'$

TEOREMA DE REPRESENTACION para las AB finitas Si B es un AB finita entonces B es iso a $\mathcal{P}(X)$ para algún X.

 \Longrightarrow Los elementos de X en el AB $\mathcal{P}(X)$ juegan el rol de átomos

DEFINICIÓN: Un elemento $a \in B$ será llamado átomo si a cubre a 0. Mediante At(B) denotamos el conjunto de todos los átomos de B.

LEMA

Sea B un álgebra de Boole finita. Entonces todo elemento de B se escribe de manera única como supremo de átomos. O sea: para todo $x \in B$ se tiene:

$$x = \sup\{a \in At(B) : a \le x\}$$

si
$$A \subseteq At(B)$$
 y $x = \sup A$, entonces $A = \{a \in At(B) : a \le x\}$

 \Longrightarrow DEFINICIÓN: $A_x = \{a \in At(B) : a \le x\}$

TEOREMA: Sea $\langle B, \emptyset, \emptyset, f, 0, 1 \rangle$ un álgebra de Boole finita

y sea X = At(B). Entonces el mapa

$$F: B \longrightarrow \mathcal{P}(X)$$

$$x \longrightarrow A_x$$

es iso de B con $\mathcal{P}(X)$