Clase 09/10/2013

Tomado y editado de los apuntes de Pedro Sánchez Terraf

Escenas de episodios anteriores

- objetivo: estudiar formalmente el concepto de demostración matemática.
- caso de estudio: lenguaje relativamente sencillo = lógica proposicional.
- lógica proposicional: sintaxis (notación) y semántica (significado).
- sintaxis.
 - definición inductiva del conjunto de proposiciones *PROP*.
 - principio de inducción sobre PROP.
 - esquema de recursión sobre *PROP*.
- semántica
 - tablas de verdad, asignaciones y valuaciones.
 - propiedades.
 - validez lógica ($\models \varphi$) y consecuencia lógica ($\Gamma \models \varphi$).
 - completitud funcional
- deducción natural
 - reglas de inferencia.
 - ejemplos de derivaciones, derivaciones como árboles.
 - definición formal de derivación, $\vdash \varphi$ y $\Gamma \vdash \varphi$.
 - principio de inducción y esquema de recursión.

Más conectivos, más reglas

Por completitud funcional, es posible "definir" los restantes conectivos en términos de los del conjunto reducido $\{\land, \rightarrow, \bot\}$. Por ejemplo, $\neg \varphi := \varphi \rightarrow \bot$ y $\varphi \lor \psi := \neg(\neg \varphi \land \neg \psi)$. Pero cuando uno hace razonamientos proposicionales en la vida real, no se restringe a este conjunto de conectivos, sino que además usa \leftrightarrow , \lor , etcétera, cada uno con sus particulares reglas de inferencia. La forma en que uno deduce un $\varphi \leftrightarrow \psi$ es partir de φ y llegar a ψ y viceversa. Esto lo podríamos condensar en una regla de introducción de \leftrightarrow :

$$\begin{array}{ccc} [\varphi] & [\psi] \\ \vdots & \vdots \\ \psi & \varphi \\ \hline \varphi \leftrightarrow \psi & & & I. \end{array}$$

Nos harían falta también reglas de eliminación. Éstas tienen la misma forma que $(\to E)$:

$$\frac{\varphi \quad \varphi \leftrightarrow \psi}{\psi} \leftrightarrow E \qquad \frac{\psi \quad \varphi \leftrightarrow \psi}{\varphi} \leftrightarrow E.$$

Las reglas para la disyunción son las siguientes:

$$\frac{\varphi}{\varphi \vee \psi} \vee I \qquad \frac{\psi}{\varphi \vee \psi} \vee I \qquad \frac{\varphi \vee \psi}{\varphi \vee \psi} \stackrel{[\varphi]}{\overset{\vdots}{\times}} \quad \frac{\vdots}{\overset{\vdots}{\times}} \quad \frac{\vdots}{\overset{\vdots}{\overset{\vdots}{\times}} \quad \frac{\vdots}{\overset{\vdots}{\times}} \quad \frac{\vdots}{\overset{\vdots}{\overset{\vdots}{\times}} \quad \frac{\vdots}{\overset{\vdots}{\overset{\vdots}{\times}}} \quad \frac{\vdots}{\overset$$

Las reglas de introducción de la disyunción son muy intuitivas: una vez demostrada una proposición, con mayor razón puedo concluir que ella u otra vale. La regla $(\vee E)$ es un modelo de prueba por casos: si puedo probar χ cuando φ es cierta, y también puedo hacerlo cuando ψ es cierta, entonces puedo probar χ bajo la única suposición de que alguna de las dos es cierta (i.e., que $\varphi \vee \psi$ es cierta).

Por último, ponemos dos reglas más relativas a la negación, que el lector reconocerá (de igual modo a las de \leftrightarrow) como abreviaciones de derivaciones ya hechas previamente:

$$\frac{\varphi \quad \neg \varphi}{\bot} \neg E \qquad \vdots \\
\frac{\bot}{\neg \varphi} \neg I$$

La extensión de la definición formal del conjunto de derivaciones \mathcal{D} se puede hacer como sigue:

$$(\leftrightarrow I)$$
 Dadas $\stackrel{\varphi}{\underset{\psi}{:}} D$ y $\stackrel{\psi}{\underset{\varphi}{:}} D'$ en \mathcal{D} , la siguiente

$$\begin{array}{ccc}
[\varphi] & [\psi] \\
\vdots D & \vdots D' \\
\psi & \varphi \\
\hline
\varphi \leftrightarrow \psi & \leftrightarrow I,
\end{array}$$

es una derivación en \mathcal{D} .

 $(\leftrightarrow E)$ Si $\stackrel{:}{\varphi}^{D_1}$, $\stackrel{:}{\psi}^{D_2}$ y $\stackrel{:}{\varphi} \stackrel{:}{\leftrightarrow} \psi$ son derivaciones, entonces

$$D' := \begin{array}{ccc} \vdots D_1 & \vdots D \\ \varphi & \varphi \leftrightarrow \psi \\ \hline \psi & & & & \\ \end{array} \longleftrightarrow E \qquad D'' := \begin{array}{ccc} \vdots D_2 & \vdots D \\ \psi & \varphi \leftrightarrow \psi \\ \hline \varphi & & & \\ \end{array} \longleftrightarrow E$$

pertenecen a \mathcal{D} .

$$(\neg I) \ \text{Dada} \ \dot{\stackrel{\varphi}{:}} \ D \ \text{en} \ \mathcal{D}, \ \text{entonces} \ \dot{\stackrel{[\varphi]}{:}} \ D \\ \dot{\stackrel{\square}{=}} \ \neg I \ \text{est\'a en } \mathcal{D}.$$

$$(\neg E) \text{ Si tenemos derivaciones } \vdots^D_{\varphi} \text{ y } \vdots^D_{\varphi} \text{ entonces } \underbrace{\vdots^D_{\varphi} \vdots^D_{\varphi}}_{\bot} \neg \varphi \text{ pertenece a } \mathcal{D}.$$

$$(\forall I) \text{ Si } \stackrel{:}{\overset{:}{\varphi}} D \text{ está en } \mathcal{D}, \text{ entonces } \frac{\stackrel{:}{\overset{:}{\varphi}} D}{\varphi \vee \psi} \vee I \text{ también lo está. Si } \stackrel{:}{\overset{:}{\psi}} D' \text{ está en } \mathcal{D},$$
 entonces $\frac{\vdots}{\varphi} D'$ también lo está.
$$(\forall E) \text{ Dadas } \stackrel{:}{\overset{:}{\varphi}} D, \stackrel{\varphi}{\overset{:}{\chi}} D' \text{ y } \stackrel{:}{\overset{:}{\chi}} D'' \text{ en } \mathcal{D}, \text{ la siguiente}$$

$$\frac{\vdots}{\varphi} D \stackrel{:}{\overset{:}{\overset{:}{\chi}}} D' \stackrel{:}{\overset{:}{\overset{:}{\chi}}} D'' \stackrel{:}{\overset{:}{\chi}} D' \stackrel{:}{\overset{:}{\chi}} D'$$

es una derivación de \mathcal{D} .

Nota 1. Tener mucho cuidado cuando se aplica la regla $\leftrightarrow I$: la hipótesis φ se cancela en la primera subderivación (es decir, D), pero no en la segunda (D'). Lo mismo se aplica para $\vee E$.

Como un ejemplo de derivación usando todas las reglas introducidas, demostraremos la equivalencia clásica entre la implicación $\varphi \to \psi$ y la "implicación material", $\neg \varphi \lor \psi$.

Ejemplo 1. Ver que $\vdash (\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$. Es natural suponer que la última regla aplicada va a ser la introducción de \leftrightarrow , así que de ese modo comenzamos nuestra derivación:

$$\begin{array}{ccc}
[\varphi \to \psi] & [\neg \varphi \lor \psi] \\
\vdots D_1 & \vdots D_2 \\
\hline
\neg \varphi \lor \psi & \varphi \to \psi \\
\hline
\varphi \to \psi \leftrightarrow \neg \varphi \lor \psi & \leftrightarrow I
\end{array}$$

El lado izquierdo necesita una aplicación de la reducción al absurdo:

zquierdo necesita una aplicación de la reducción al absurdo:
$$\frac{[\varphi]_1 \quad \varphi \to \psi}{\frac{\psi}{\neg \varphi \lor \psi} \lor I} \to E$$

$$\frac{\frac{\psi}{\neg \varphi \lor \psi} \lor I}{\frac{1}{\neg \varphi} \lor \psi} \neg E$$

$$\frac{\frac{\bot}{\neg \varphi \lor \psi} \lor I}{\frac{\neg \varphi \lor \psi}{\neg \varphi \lor \psi} \lor I} \frac{[\neg (\neg \varphi \lor \psi)]_2}{\neg \varphi \lor \psi} \neg E$$

$$\frac{\bot}{\neg \varphi \lor \psi} RAA_2$$
 como única hipótesis no cancelada a $\varphi \to \psi$ y $Concl(D_1) = \neg \varphi \lor \psi$, así

 D_1 tiene como única hipótesis no cancelada a $\varphi \to \psi$ y $Concl(D_1) = \neg \varphi \lor \psi$, así que nos sirve

El lado derecho es el más fácil:

$$D_{2} := \frac{ \frac{ [\neg \varphi]_{3} \quad [\varphi]_{4}}{\bot} \neg E}{\frac{\bot}{\psi} \bot} \left[\psi \right]_{3}}{\frac{\psi}{\varphi \to \psi} \to I_{4}}$$

También D_2 tiene las propiedades requeridas, así que

$$\begin{array}{ccc}
[\varphi \to \psi]_5 & [\neg \varphi \lor \psi]_5 \\
\vdots D_1 & \vdots D_2 \\
\neg \varphi \lor \psi & \varphi \to \psi \\
\hline
\varphi \to \psi \leftrightarrow \neg \varphi \lor \psi & \leftrightarrow I_5
\end{array}$$

es la derivación que andábamos buscando (donde cancelamos las hipótesis recuadradas).

Extensión de las definiciones recursivas de la clase pasada

La clase pasada definimos la función $Concl(\cdot): \mathcal{D} \to PROP$. Como acabamos de extender el conjunto \mathcal{D} , completamos la definición:

$$Concl(\frac{\varphi]}{\psi}, \frac{[\psi]}{\varphi}, \frac{[\psi]}{\psi}, \frac{[\psi$$

También extendemos la definición de la función recursiva $Hip(\cdot): \mathcal{D} \to \mathcal{P}(PROP)$:

$$Hip(\frac{[\varphi]}{\psi} \xrightarrow{\vdots} D \xrightarrow{\vdots} D') = (Hip(\frac{\vdots}{\cdot} D) - \{\varphi\}) \cup (Hip(\frac{\vdots}{\cdot} D') - \{\psi\})$$

$$\frac{\vdots}{\varphi} D_1 \xrightarrow{\vdots} D \qquad \vdots D \qquad \vdots$$

$$Hip(\stackrel{:}{\varphi}_{Q \vee A}) = Hip(\stackrel{:}{\varphi}_{Q})$$

$$Hip(\frac{\vdots}{\psi}D') = Hip(\frac{\vdots}{\psi}D')$$

$$Hip(\underbrace{\frac{\vdots D}{\varphi \vee \psi} \quad \frac{\vdots D'}{\chi} \quad \frac{\vdots D''}{\chi}}_{\chi} \vee E) = Hip(\underbrace{\vdots D}_{\varphi \vee \psi}) \cup (Hip(\underbrace{\vdots D'}_{\chi}) - \{\varphi\}) \cup (Hip(\underbrace{\vdots D'}_{\chi}) - \{\psi\})$$

Hacer también alguna de las siguientes derivaciones:

 $\vdash \cdot \rightarrow \cdot$ es reflexiva, transitivia y algo así como antisimétrica.