1

Parte II: Lógica Proposicional

27 de septiembre de 2017

El conjunto Prop

- Asumimos un conjunto numerable $\mathcal V$ de variables proposicionales y definimos los átomos como $At=\mathcal V\cup\{\bot\}$.
- Las proposiciones eran ciertas palabras sobre $\Sigma = At \cup \{\neg, \lor, \land, \rightarrow, \leftrightarrow\} \cup \{(,)\}.$
- Al conjunto Prop lo definimos inductivamente:

```
\begin{array}{l} \phi \in At \ \ {\rm Si} \ \phi \in At, \ {\rm entonces} \ \phi \in Prop; \\ (\neg \phi) \ \ {\rm Si} \ \phi \in Prop, \ {\rm entonces} \ (\neg \phi) \in Prop; \\ (\phi \lor \psi) \ \ {\rm Si} \ \phi \in Prop \ {\rm y} \ \psi \in Prop, \ {\rm entonces} \ (\phi \lor \psi) \in Prop. \\ (\phi \land \psi) \ \ {\rm Si} \ \phi \in Prop \ {\rm y} \ \psi \in Prop, \ {\rm entonces} \ (\phi \land \psi) \in Prop. \\ (\phi \to \psi) \ \ {\rm Si} \ \phi \in Prop \ {\rm y} \ \psi \in Prop, \ {\rm entonces} \ (\phi \to \psi) \in Prop. \\ (\phi \leftrightarrow \psi) \ \ {\rm Si} \ \phi \in Prop \ {\rm y} \ \psi \in Prop, \ {\rm entonces} \ (\phi \leftrightarrow \psi) \in Prop. \end{array}
```

Recursión en Prop

- Podemos definir funciones recursivamente:
- Para definir $f : Prop \rightarrow X$ debemos definir:

$$f(\phi) = \begin{cases} x_i & \text{si } \phi = p_i \\ y & \text{si } \phi = \bot \end{cases}$$

 Y tenemos varios casos recursivos, uno para cada conectivo; en el caso de la negación:

$$f((\neg \phi)) = \dots f(\phi) \dots$$

• Para las fórmulas de la forma $(\phi \square \psi)$, podemos utilizar la llamada recursiva tanto en ϕ como en ψ :

$$f((\phi \square \psi)) = \dots f(\phi) \dots f(\psi) \dots$$

- Cantidad de conectivos en una proposición.
- Cantidad de símbolos "(" y ")" en una proposición:
- Sustitución del símbolo p_i por la proposición ψ :

$$\begin{aligned} -\left[\psi/p_{i}\right] &: Prop \rightarrow Prop \\ p_{j}\left[\psi/p_{i}\right] &= \begin{cases} \psi & \text{si } i = j \\ p_{j} & \text{si } i \neq j \end{cases} \\ &\perp \left[\psi/p_{i}\right] = \perp \\ &(\neg \phi)\left[\psi/p_{i}\right] = (\neg \phi\left[\psi/p_{i}\right]) \\ &(\phi \Box \psi)\left[\psi/p_{i}\right] = (\phi\left[\psi/p_{i}\right] \Box \psi\left[\psi/p_{i}\right]) \end{aligned}$$

4

Inducción en sub-fórmulas

- Podemos probar propiedades sobre Prop utilizando inducción sobre proposiciones.
- Para probar que toda $\phi \in Prop$ satisface un predicado A, alcanza con probar:

```
\phi \in At \ A(\phi), para todo \phi \in At;

(\neg \phi) \ \text{Si} \ A(\phi), entonces A((\neg \phi));

(\phi \Box \psi) \ \text{Si} \ A(\phi) \ \text{y} \ A(\psi), entonces A((\phi \Box \psi)).
```

• La clase pasada utilizamos este principio para probar: "para toda $\phi \in Prop, \ paren(\phi) = 2 * con(\phi)$ ".

Semántica

- Las proposiciones representan afirmaciones, alcanza con utilizar 2.
- Por ejemplo, establecimos que \perp representaba la afirmación falsa.
- Para otras, hoy llueve (representada por alguna p_i) no podemos fijar su valor de verdad de una vez y para siempre.
- ¿Cuál es el valor de $(\neg p_1)$? $p_1 \quad (\neg p_1)$ $0 \quad 1$ $1 \quad 0$
- En general, el valor de $(\phi \square \psi)$, dependerá del valor de ϕ y del de ψ .

Tabla de verdad

- En una tabla de verdad esa dependencia se hace patente.
- Cada línea de la tabla de verdad muestra una asignación de valores a las variables proposicionales:

p_0	p_1	p_2	$(\neg p_0)$	$((\neg p_0) \land p_1)$	$(((\neg p_0) \land p_1) \to p_2)$
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	1	1	0
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	0	0	1

Completitud funcional

- Una función $2^n \to 2$ puede describirse con una tabla de verdad.
- Dada una función $F \colon 2^n \to 2$ existe una proposición ϕ tal que la tabla de verdad de ϕ sea justamente la función F?

p_0	p_1	p_2	$F(p_0, p_1, p_2)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Idea: Disyunción de los *minterms* de las líneas con 1 en $F(p_0, p_1, p_2)$.

- Sólo utilizamos ¬, ∧, ∨.
- Un conjunto de conectivos es funcionalmente completo, si toda función 2ⁿ → 2 se puede describir con una proposición que sólo utilice esos conectivos.
- Si sabemos que un conjunto es funcionalmente completo, entonces podemos probar que otro conjunto lo es, utilizando equivalencias lógicas.
- Ejemplo, como $[\![(\phi \lor \psi)]\!]_f = [\![((\neg \phi) \land (\neg \psi))]\!]_f$, entonces $\{\neg, \land\}$ es funcionalmente completo.

Semántica

- Los valores de las columnas que no son variables queda determinada unívocamente de las anteriores.
- Una asignación es una función $f: \mathcal{V} \to 2$.
- En la tabla de verdad, ¿listamos todas las asignaciones?
- Más adelante veremos por qué alcanza con algunas asignaciones.

Semántica

 Dada una asignación f, el valor de verdad de una proposición se define recursivamente:

Coincidencia

Teorema (de coincidencia)

Si $f, f' \colon \mathcal{V} \to 2$ coinciden en las variables que ocurren en ϕ , entonces $[\![\phi]\!]_f = [\![\phi]\!]_{f'}$.

Por inducción en ϕ .

Lema (de sustitución)

Sea f una asignación, tal que $\llbracket \psi_1 \rrbracket_f = \llbracket \psi_2 \rrbracket_f$. Entonces $\llbracket \phi \left[\psi_1/p_i \right] \rrbracket_f = \llbracket \phi \left[\psi_2/p_i \right] \rrbracket_f$.

Por inducción en sub-fórmulas. En el pizarrón.

Validez

- La asignación f satisface ϕ si $\llbracket \phi \rrbracket_f = 1$.
- φ es una tautología (ó es válida) si es satisfecha por toda asignación.
- Sea $\Gamma \subseteq Prop$, decimos que f es un modelo de Γ , si para toda $\phi \in \Gamma$, f satisface ϕ .
- ¿Existe algún modelo de Prop?

Consecuencia lógica

- Si ϕ es una tautología, escribimos $\models \phi$.
- Decimos que ϕ es consecuencia lógica de Γ si todo modelo de Γ satisface ϕ . Lo escribimos $\Gamma \models \phi$.
- Como toda asignación es un modelo de \emptyset , entonces $\models \phi$ es lo mismo que $\emptyset \models \phi$.

Consecuencia lógica

- $\models (\phi \rightarrow \phi).$
- Si $\phi \in \Gamma$, entonces $\Gamma \models \phi$.
- $\{\phi, (\phi \to \psi)\} \models \psi$.
- $\not\models p_1$.

Teorema (de sustitución)

$$\mathit{Si} \models (\psi_1 \leftrightarrow \psi_2)$$
, entonces $\models (\phi [\psi_1/p_i] \leftrightarrow \phi [\psi_2/p_i])$.