
Motivations
Java security

Proof Carrying Code
Mobius project

Formal methods for software security

Gilles Barthe

INRIA, Sophia-Antipolis, France

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Programme

Day 1: Formal methods for security
Day 2: Progam verification
Day 3: Information flow

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Today

Motivations
Bytecode verification
Proof Carrying Code
The Mobius project
State-of-the-art

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Fact sheet

Integrated Project, started Sept 2005, 4 years duration.
Part of the FET pro-active initiative Global Computing II
16 members

INRIA LMU Münich
RU Nijmegen ETH Zürich
U. Edinburgh Chalmers U.

Tallinn U. Imperial College
UC. Dublin U. Warsaw
UP. Madrid TLS

SAP Research France Telecom
Trusted Logic RWTH Aachen

(TU Darmstadt)

Scientific Advisory Board:
Martin Abadi Amy Felty Rustan Leino

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Objective

Establish a security architecture appropriate for global
computers:

1 adopt a computational model that captures faithfully
fundamental aspects of global computers

2 identify the trust and security requirements of such a model
3 develop on top of the computational model a security

framework that enforces these requirements
4 provide the enabling technologies necessary for

implementing the framework
5 validate the architecture

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Computational model

Very large distributed networks of JVM-enabled devices:
uniformity vs heterogeneity: aimed at providing a global
and uniform access to services, yet subject to resource
constraints
flexibility vs security: open architectures, yet subject to
security constraints
mobile components: code and computational
infrastructures

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

General view of computational model

Libraries

Virtual Machine

Applet Applet

�������������������������
�������������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

Applet

Virtual Machine

Libraries

Applet

Current scenario Mobius scenario

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Security framework

Need of a framework:
providing precise, efficient, resource-aware enforcement
mechanisms
for a wide range of expressive policies, including

Information flow and resource control
Framework-level and application-level
Safety and functional correctness

for a widely deployed infrastructure
with the highest guarantees

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Security framework

To deliver a framework with appropriate characteristics, we
adopt ideas from Proof Carrying Code (PCC), proposed by
Necula and Lee around 1996.
Downloaded components come equipped with certificates,
where certificates:

are condensed and formalized mathematical proofs/hints
are self-evident and unforgeable,
can be checked efficiently.

PCC certificate is different from standard crypto-based
certificate.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Main flavors of PCC

Type-based PCC

Compiler
Certifying
Compiler

BCV

Runtime environment
Program Cert.

Program

Widely deployed in
CLDC (and soon in
J2SE)
On-device checking is
possible

Logic-based PCC

Compiler

Certifying

Compiler

Runtime environment
Program

Program
VC

generator

Checker

Cert.

Original scenario
Applications to type
safety and memory
safety

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Enabling technologies

Enabling technologies should provide enough precision and
automation to guarantee applicability and scalability.

Type systems/static analyses:
efficient, automatic, but specialized and imprecise
used for information flow, resource usage, aliasing

Program logics:
general, precise, but interactive
used for high-level security policies, non-functional
properties, and functional correctness

The goal is to provide integration and support for type systems
and logics within the Mobius tool.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Mobius vision

Source program

Source Specification
(types + logics)

Runtime environment

Bytecode program

Bytecode Specification

Certificate

R
eq

ui
re

m
en

ts

Certificate
checker

Certificate
generation

Certificate
Certificate

Bytecode program

Bytecode Specification

Interactive
proofs

Java
compiler

Spec
compiler

Proof
compiler

Code producer

Code consumer

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Specializing the architecture

In order to target different application domains, we can select
different layers in the framework

Enhanced bytecode verification for efficient and automatic
verification of generic security properties
Logical verification of basic security rules:

annotation assistants
proof inference

Logical verification of complex security and functionality
properties:

component validation
proof construction
proof checking

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Scientific achievements to date

Requirements and scenarios.
Information flow and resource control requirements
Framework specific and application specific requirements
Proof Carrying Code scenarios

Type-based verification.
Information flow
Resource control
Aliasing

Logic-based verification.
Bytecode logic, modeling language and verification
condition generator
Prototype implementation of the verification environment
Initial results on multi-threading

PCC.
Reflective Proof Carrying Code
Type-preserving and proof-transforming compilation

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Software reliability

Objective is to ensure that
software does not crash
software behaves as expected
software complies with resource constraints, e.g. timing

Strong need for reliability in embedded and safety-critical
software: bugs may cost lives and money

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

A famous example

Ariane 5:
10 years work,
$7 billions,
. . . for 39 seconds flight!

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

A famous example

Ariane 5:
10 years work,
$7 billions,
. . . for 39 seconds flight!

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Software security

Objective is to ensure that
Confidential information is not released
Integrity of data is preserved
Availability of resources is guaranteed

Strong need for security in trusted personal devices:
attacks may cost money, reputation, etc.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Mobile code

Execution of untrusted mobile code is increasingly ubiquitous:
in web pages (JavaScript, Macromedia Flash)
in trusted personal devices (mobile phones, smart cards)
in embedded systems (aeronautics, automotive)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Mobile code dilemmas. . .

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Mobile code dilemmas. . .

Safe ?

Untrusted code Host system

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Overview of Mobius project
Reliability and security

Mobile code risks

The untrusted code may
cause damages on the system

destruction/corruption of files applications
reveal sensitive information

passwords, financial information
perform unauthorized actions

transactions, open sockets
use too many resources

CPU, memory. . .
be hostile towards other applications

(requiring applet isolation in multi-application smart cards)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Java(Card) runtime environment

Virtual Machine

 APIs

Industry−Specific Extensions

 Operating System

011100011
101011010
011111001
110110111
100100110

 Applet
011100011
101011010
011111001
110110111
100100110

 Applet
011100011
101011010
011111001
110110111
100100110

 Applet

Linking
Loading

011100011
101011010
011111001
110110111
100100110

Java compiler Class File Converter
Cap File Builder

package fr.inri

import javacar

public class no
 public Object

011100011
101011010
011111001
110110111
100100110

Bytecode verifier

Class fileJava source Cap file

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Security challenge

Given an applet, how do we ensure that it is correct?

Define correct: what does it mean?
secure: compliant with a policy
functionally correct

Is the platform correct?
Are the libraries correct?

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Stack inspection: principles

Each method has an associated set of permissions that
determines the functionalities it can access; for example:

File permissions: read, write, delete;
Socket permissions: connect, accept connections

Stack inspection regulates functionalities accessed by
each method w.r.t. its set of permissions: an operation is
performed only if all methods in the frame stack have
permission to do.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Privileged code

Stack inspection is effective when an untrusted principal
calls an trusted principal: it protects the called method
from the calling method.
Code can be marked as privileged. This means that it
grants all its permissions to its callers. It is useful to enable
libraries to execute on behalf of untrusted code, e.g.
applets may require reading fonts.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Stack inspection, informally

Repeat until the call stack is empty:
1 Check if current method has requested permission.

If not, throw SecurityException.
2 Check if current method is privileged.

If so, grant permission. (inspection stops)
3 Move on to calling method

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

History-based stack inspection

Stack inspection is not effective to protect the calling
method from the method called.

1 If A calls B
2 B returns
3 A calls C

Call to C depends on call to B: the dependency is missed
by stack inspection
Abadi and Fournet (2003): the run-time rights of a piece of
code are determined by examining the attributes of any
pieces of code that have run (including their origins) and
any explicit requests to augment rights.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Beyond stack inspection

More expressive security policies can be expressed
using e.g. security automata (Schneider)
as temporal properties over control flow graphs (Jensen et
al)

Both can account for history-based policies, but go beyond

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Bytecode verification: goals

Bytecode verification aims to contribute to safe execution of
programs by enforcing:

Structural verification
Values are used with the right types
(no pointer arithmetic)
Operand stack is of appropriate length
(no overflow, no underflow)
Subroutines are correct
Object initialization

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Bytecode verification: limits

Successful bytecode verification does not guarantee safety:
array bound checks
casts

must be enforced dynamically.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Bytecode verification: principle

Bytecode verification is a data flow analysis based on a
typed virtual machine. It is a conservative analysis (rejects
all unsafe programs and potentially safe programs).
Bytecode verification is modular: each method is analyzed
on its own, using the method signature table to handle
method calls.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

The partial order of JCVM types

>

Object

Prim

ssssssssssss
Interfaces Arrays

UUUUUUU

Instances

Null

⊥

zzzzzzzzzzzzzz

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

The typed abstract machine

A JVM state consists of a heap and of a stack frame. Each
frame contains a program counter, an operand stack and a
register map
A typed state contains a stack type st and a register type rt
The typed abstract machine is defined by rules of the form

P[i] = instr constraints
i ` st , rt ⇒ st ′, rt ′

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Sample rules

P[i] = iadd
i ` int :: int :: st , rt ⇒ int :: st , rt

P[i] = iconst n |st |+ 1 ≤ Mstack
i ` st , rt ⇒ int :: st , rt

P[i] = aload n rt(n) = τ τ ≺ Object |st |+ 1 ≤ Mstack
st , rt ⇒ τ :: st , rt

P[i] = astore n τ ≺ Object 0 ≤ n < Mreg
i ` τ :: st , rt ⇒ st , rt [n← τ]

P[i] = getfield C f τ τ′ ≺ C
i ` τ′ :: st , rt ⇒ τ :: st , rt

P[i] = putfield C f τ τ1 ≺ τ τ2 ≺ C
i ` τ1 :: τ2 :: st , rt ⇒ st , rt

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Bytecode verification: implementation

Different analyses are possible, with different assumptions
to guarantee termination.
Analyses use K algorithm.

Stackmaps collect execution history for each program point
Initially all program points except the entry point store
uninitialized stackmaps
Unification “injects” a state into an history

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Kildall algorithm: main loop

Pick a program point i marked as true
execute with the abstract virtual machine instruction insi
on state sti,lvi
For all successors j of i, merge the result
sti-res,lvi-res with stj,lvj
mark successors as true if the merge is not the identity.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Merging: monovariant verification

Original algorithm, does not handle polymorphic subroutines

history structure = one abstract state
merging = lub

termination = no infinite ascending chain

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass

2nd pass

0: jsr 10 (),[>;>]
1: iconst 0

(),[>;RA 0]

2: istore 0

(int),[>;RA 0]

3: jsr 10

(),[int;RA 0]

4: iload 0

(),[int;RA 3]

10: astore 1

(RA 0),[>;>] (RA 3),[int;RA 0]

11: ret 1

(),[>;RA 0] (),[int;RA 3]

States : (operand stack), [local variables]

Choice of verification
Failure of monovariant verification
Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass

2nd pass

0: jsr 10 (),[>;>]
1: iconst 0

(),[>;RA 0]

2: istore 0

(int),[>;RA 0]

3: jsr 10

(),[int;RA 0]

4: iload 0

(),[int;RA 3]

10: astore 1 (RA 0),[>;>]

(RA 3),[int;RA 0]

11: ret 1

(),[>;RA 0] (),[int;RA 3]

States : (operand stack), [local variables]

Choice of verification
Failure of monovariant verification
Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass

2nd pass

0: jsr 10 (),[>;>]
1: iconst 0

(),[>;RA 0]

2: istore 0

(int),[>;RA 0]

3: jsr 10

(),[int;RA 0]

4: iload 0

(),[int;RA 3]

10: astore 1 (RA 0),[>;>]

(RA 3),[int;RA 0]

11: ret 1 (),[>;RA 0]

(),[int;RA 3]

States : (operand stack), [local variables]

Choice of verification
Failure of monovariant verification
Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass

2nd pass

0: jsr 10 (),[>;>]
1: iconst 0 (),[>;RA 0]
2: istore 0

(int),[>;RA 0]

3: jsr 10

(),[int;RA 0]

4: iload 0

(),[int;RA 3]

10: astore 1 (RA 0),[>;>]

(RA 3),[int;RA 0]

11: ret 1 (),[>;RA 0]

(),[int;RA 3]

States : (operand stack), [local variables]

Choice of verification
Failure of monovariant verification
Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass

2nd pass

0: jsr 10 (),[>;>]
1: iconst 0 (),[>;RA 0]
2: istore 0 (int),[>;RA 0]
3: jsr 10

(),[int;RA 0]

4: iload 0

(),[int;RA 3]

10: astore 1 (RA 0),[>;>]

(RA 3),[int;RA 0]

11: ret 1 (),[>;RA 0]

(),[int;RA 3]

States : (operand stack), [local variables]

Choice of verification
Failure of monovariant verification
Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass

2nd pass

0: jsr 10 (),[>;>]
1: iconst 0 (),[>;RA 0]
2: istore 0 (int),[>;RA 0]
3: jsr 10 (),[int;RA 0]
4: iload 0

(),[int;RA 3]

10: astore 1 (RA 0),[>;>]

(RA 3),[int;RA 0]

11: ret 1 (),[>;RA 0]

(),[int;RA 3]

States : (operand stack), [local variables]

Choice of verification
Failure of monovariant verification
Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass 2nd pass
0: jsr 10 (),[>;>]
1: iconst 0 (),[>;RA 0]
2: istore 0 (int),[>;RA 0]
3: jsr 10 (),[int;RA 0]
4: iload 0

(),[int;RA 3]

10: astore 1 (RA 0),[>;>] (RA 3),[int;RA 0]
11: ret 1 (),[>;RA 0]

(),[int;RA 3]

States : (operand stack), [local variables]

Choice of verification

Failure of monovariant verification
Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass 2nd pass
0: jsr 10 (),[>;>]
1: iconst 0 (),[>;RA 0]
2: istore 0 (int),[>;RA 0]
3: jsr 10 (),[int;RA 0]
4: iload 0

(),[int;RA 3]

10: astore 1 (RA 0),[>;>] (RA 3),[int;RA 0]
11: ret 1 (),[>;RA 0]

(),[int;RA 3]

States : (operand stack), [local variables]
Choice of verification

Failure of monovariant verification

Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass 2nd pass
0: jsr 10 (),[>;>]
1: iconst 0 (),[>;RA 0]
2: istore 0 (int),[>;RA 0]
3: jsr 10 (),[int;RA 0]
4: iload 0

(),[int;RA 3]

10: astore 1 (RA 0),[>;>] (RA 3),[int;RA 0]
11: ret 1 (),[>;RA 0]

(),[int;RA 3]

States : (operand stack), [local variables]
Choice of verification

Failure of monovariant verification

Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass 2nd pass
0: jsr 10 (),[>;>]
1: iconst 0 (),[>;RA 0]
2: istore 0 (int),[>;RA 0]
3: jsr 10 (),[int;RA 0]
4: iload 0

(),[int;RA 3]

10: astore 1 (RA 0),[>;>] (RA 3),[int;RA 0]
11: ret 1 (),[>;RA 0] (),[int;RA 3]

States : (operand stack), [local variables]
Choice of verification

Failure of monovariant verification
Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Verification example

PC instruction 1st pass 2nd pass
0: jsr 10 (),[>;>]
1: iconst 0 (),[>;RA 0]
2: istore 0 (int),[>;RA 0]
3: jsr 10 (),[int;RA 0]
4: iload 0 (),[int;RA 3]

10: astore 1 (RA 0),[>;>] (RA 3),[int;RA 0]
11: ret 1 (),[>;RA 0] (),[int;RA 3]

States : (operand stack), [local variables]
Choice of verification

Failure of monovariant verification
Polyvariant verification succeeds

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Handling subroutines with polyvariant verification

Does handle polymorphic subroutines, characterizes programs
accepted by abstract VM

history structure = sets of abstract states
merging = set addition

termination = finite number of abstract states

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Merging: hybrid verification

Limits memory consumption

history structure = sets of abstract states
merging = lub set addition

termination = finite number of abstract states +
no infinite ascending chain

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Other challenges with bytecode verification

interfaces:

i n t e r f a c e I { . . . }
i n t e r f a c e J { . . . }
c lass C implements I , J { . . . }
c lass D implements I , J { . . . }

Both I and J are upper bounds for C and D, but I and J are
incomparable.
initialization: enforced by side effect, not monotonic!

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Bytecode verification vs. defensive virtual machine

Defensive JCVM is closest to specification:
It manipulates typed values
Types are checked at run-time

Offensive JCVM is closest to implementation:
It manipulates untyped values
Type correctness enforced by BCV

Typed JCVM used in bytecode verification:
Manipulates types as values
Operates on a method-per-method basis

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Cross Validation

Main property: Defensive and offensive VMs coincide on
programs that are well-typed for the typed VM

offensive and defensive VMs coincide on programs
well-typed for the defensive VM
programs that are ill-typed for the defensive VM are
ill-typed with the typed VM

Best viewed as some form of correctness of abstractions

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Offensive vs. Defensive

Offensive VM is derived from defensive VM
Derivation function removes types from typed values
Diagram commutes

dstate

αdo

��

dexec // drstate

αr
do

��
ostate

oexec // orstate

if defensive VM does not raise typing errors

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Offensive vs. Defensive

Offensive VM is derived from defensive VM
Derivation function removes types from typed values
Diagram commutes

dstate

αdo

��

dexec // drstate

αr
do

��
ostate

oexec // orstate

if defensive VM does not raise typing errors

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Typed vs. Defensive

Typed VM is derived from defensive VM
Derivation function removes value from typed values
Diagram commutes

dstate

αda

��

dexec // drstate� _

αr
da

��
astate

aexec // arstate?

if “execution keeps in the same frame”

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Typed vs. Defensive

Typed VM is derived from defensive VM
Derivation function removes value from typed values
Diagram commutes

dstate

αda

��

dexec // drstate� _

αr
da

��
astate

aexec // arstate?

if “execution keeps in the same frame”

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Variants of bytecode verification

In order to perform verification on-card, more resource-aware
algorithms must be designed.

Rose, KVM: Lightweight bytecode verification
Leroy: Code rewriting and one-pass verification

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Lightweight Bytecode Verifier

Part of KVM (JVM for embedded devices).
Code

KVM

lightweight
verifier

standard
verifier

types

safety policy = standard Java type safety
the certificate is a type annotation
verification is fast and requires very few memory

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Discussing Rose’s approach

Advantages:
certificates are small,
certificate verification is fast,
certificate generation is automatic.

Limitations:
security policy is simple and fixed

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Beyond bytecode verification

Abstract Interpretation [Cousot and Cousot 77] is a method for
designing approximate semantics of programs.

application to static analysis: static analysers are
computable approximate semantics of programs

a static analysis is presented as a post-fixpoint ~p�] of a
functional F] in a lattice

F]
(
~p�]
)
v ~p�]

~p�] is computed by complex iterative methods
but checking a given post-fixpoint is fast

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Stack inspection
Bytecode verification

Abstract interpretation-based lightweight verification

Code

JVM

post-fixpoint
checker

post-
fixpoint
solver

post-fixpoint

no extra-annotation is required
there are generic techniques for fixpoint compression
but each post-fixpoint checker is ad-hoc

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Pioneers

Necula & Lee, Safe Kernel Extensions Without Run-Time
Checking, OSDI’96
Necula, Proof-Carrying Code, POPL’97
Necula & Lee, The Design and Implementation of a
Certifying Compiler, PLDI’98

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Proof carrying code: standard framework

Code

CPU

certificate
verifier

certifying
prover

Proof

based on axiomatic semantics,
code is annotated (loop invariant),
the VCGen computes logic formulae to be proved,
the certifying prover computes proof object,
the consumer builds formulae and checks proof objects
against them

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Proof carrying code: standard framework

Code

CPU

certificate
verifier

certifying
prover

Proof

based on axiomatic semantics,
code is annotated (loop invariant),
the VCGen computes logic formulae to be proved,
the certifying prover computes proof object,
the consumer builds formulae and checks proof objects
against them

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Proof carrying code: standard framework

Code

CPU

certificate
verifier

certifying
prover

Proof

Annotations

based on axiomatic semantics,
code is annotated (loop invariant),
the VCGen computes logic formulae to be proved,
the certifying prover computes proof object,
the consumer builds formulae and checks proof objects
against them

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Proof carrying code: standard framework

Code

CPU

certificate
verifier

certifying
prover

Proof

Annotations

VCGen

VCGen

based on axiomatic semantics,
code is annotated (loop invariant),
the VCGen computes logic formulae to be proved,
the certifying prover computes proof object,
the consumer builds formulae and checks proof objects
against them

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Proof carrying code: standard framework

Code

CPU

certificate
verifier

certifying
prover

Proof

Annotations

VCGen

VCGen

based on axiomatic semantics,
code is annotated (loop invariant),
the VCGen computes logic formulae to be proved,
the certifying prover computes proof object,
the consumer builds formulae and checks proof objects
against them

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Proof carrying code: standard framework

Code

CPU

certificate
verifier

certifying
prover

Proof

Annotations

VCGen

VCGen

based on axiomatic semantics,
code is annotated (loop invariant),
the VCGen computes logic formulae to be proved,
the certifying prover computes proof object,
the consumer builds formulae and checks proof objects
against them

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

The maze metaphor (c©G. Necula)

program = maze

proof = red path

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

The maze metaphor (c©G. Necula)

program = maze proof = red path

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

What is a certificate?

are condensed and formalized mathematical proofs/hints
are self-evident and unforgeable,
can be checked efficiently.

PCC certificate is different from standard crypto-based
certificate.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Certificates are tamper-proof

What happens if the program or the certificate are modified?
the proof is no longer valid: the program is rejected
the proof is valid: the program is accepted

In the second case the guarantee still holds.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Advantages of PCC

No need to trust the code producer nor the compiler
No need for cryptography
No runtime overhead
Flexible policies can be supported

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Optimizing native code using PCC

A successful application of standard PCC: compiling Java
bytecode into optimised native code while ensuring type safety.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Pros and cons of standard PCC

Advantages:
the verifier is efficient
the verifier is (certainly) sound : well-understood
techniques,
the verifier is generic

Disadvantages:
certificates are big
soundness of the whole architecture relies on the VCGen

but VCGen is not bug-free!

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

What’s a proof?

Follows Curry-Howard isomorphism.

Curry-Howard isomorphism

theorem ←→ type
proof ←→ λ-term

proof checker ←→ type-checker

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Other certificate formats

Trade-off between size of certificates and complexity of
certificate checkers:

Implicit λ-terms
Tactic-based PCC
Oracle-based PCC

Other approaches could be envisioned:
probabilistic certificates

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Foundational PCC

Specify machine semantics directly in higher-order logic
avoids using a VCGen

Prove typing rules as derived lemmas
removes type system from TCB

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

Pros and cons of FPCC

Pros
increased security (smaller TCB)
increased flexibility (lesser commitment to a particular type
system)

Cons
machine semantics may be complex to formalize
formal verification of the typing rules is costly

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

The story so far. . .

It is very difficult to combine all PCC requirements:
the certificates must be small,
the verifier must be efficient,
the verifier must be sound,
the proof producer must exists,
the safety policy must be expressive

Still an active research trend. . .

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Mobius goals

Scenarios
Frameworks
Requirements

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

PCC with Intermediaries

PCC with trusted intermediary
midlet that originates from untrusted party.
Signed by phone operator after checking the PCC
certificate showing the midlet complies with the operator
requirements.
Combines PCC and PKI.
Size of certificates is not an issue.

PCC with untrusted intermediaries

application is transferred through intermediaries that modify
its code
Each modification should be justified by certificate
translation.

.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

The Mobius scenario

MOBIUS promotes trust through verifiable evidence (PCC).
Can be combined with trust by authority or trust by
reputation.
Phone operators/manufacturers can act as trusted
intermediaries:

Producer 1 Consumer 1

Producer 2 Consumer 2

Producer P

Consumer C

Phone Operator/

PCC PKI

 Manufacturer

Provides an appropriate trade-off between feasibility and
flexibility which will be exploited in the rest of the project.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Multiple Code Producers — Impact of PCC

(distributed) applications consist of compositions of many
components from many sources
fundamental changes to component-based development
practices

component selection with PCC and generalised certificates
changes to the software development process
liability and culpability

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Multiple Code Consumers

In PCC, it is natural to have multiple code consumers.
Scenarios with multiple consumers:

mutual trust among consumers: compositional verification
mutual distrust among consumers: result certification
large-scale distributed checking: evolving trust
dynamic composition of PCC components

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

A parenthesis on result checking: principles

Given a function f ∈ A → B and an entry a ∈ A , the user
delegates the computation f(a) ∈ B to an untrusted part.

Untrusted part User

(f ,a)

b

let b = f(a)
is b equals

to f(a)?

Idea : propose a checker checkf ∈ A × B → bool s.t.

∀a ∈ A , b ∈ B , checkf (a,b) = true ⇒ b = f(a)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

A parenthesis on result checking: principles

Given a function f ∈ A → B and an entry a ∈ A , the user
delegates the computation f(a) ∈ B to an untrusted part.

Untrusted part User

(f ,a)

b

let b = f(a)
is b equals

to f(a)?

Idea : propose a checker checkf ∈ A × B → bool s.t.

∀a ∈ A , b ∈ B , checkf (a,b) = true ⇒ b = f(a)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

A parenthesis on result checking: principles

Given a function f ∈ A → B and an entry a ∈ A , the user
delegates the computation f(a) ∈ B to an untrusted part.

Untrusted part User

(f ,a)

b

let b = f(a)

is b equals
to f(a)?

Idea : propose a checker checkf ∈ A × B → bool s.t.

∀a ∈ A , b ∈ B , checkf (a,b) = true ⇒ b = f(a)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

A parenthesis on result checking: principles

Given a function f ∈ A → B and an entry a ∈ A , the user
delegates the computation f(a) ∈ B to an untrusted part.

Untrusted part User

(f ,a)

b

let b = f(a)

is b equals
to f(a)?

Idea : propose a checker checkf ∈ A × B → bool s.t.

∀a ∈ A , b ∈ B , checkf (a,b) = true ⇒ b = f(a)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

A parenthesis on result checking: principles

Given a function f ∈ A → B and an entry a ∈ A , the user
delegates the computation f(a) ∈ B to an untrusted part.

Untrusted part User

(f ,a)

b

let b = f(a)
is b equals

to f(a)?

Idea : propose a checker checkf ∈ A × B → bool s.t.

∀a ∈ A , b ∈ B , checkf (a,b) = true ⇒ b = f(a)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

A parenthesis on result checking: principles

Given a function f ∈ A → B and an entry a ∈ A , the user
delegates the computation f(a) ∈ B to an untrusted part.

Untrusted part User

(f ,a)

b

let b = f(a)
is b equals

to f(a)?

Idea : propose a checker checkf ∈ A × B → bool s.t.

∀a ∈ A , b ∈ B , checkf (a,b) = true ⇒ b = f(a)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Result-Checking requirements

Let R ⊆ A × B represents the expected behaviour of f .

∀a ∈ A , (a, f(a)) ∈ R

Challenge in Result-Checking: find a checking function checkf

1 correct : ∀a ∈ A ,b ∈ B , checkf (a,b) = true ⇒ (a,b) ∈ R
2 efficient : complexity(f ,a) < complexity(checkf ,a)

Efficiency can be relaxed if we focus on correctness of the
computation.

Result-Checking as a new proof technique : prove checkf
instead of f

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

The naive checker

A naive checker always exists.

checkf (a,b) := (b = f(a))

but, of course:
correctness of checkf is then as hard as that of f !
complexity(f ,a) ∼ complexity(checkf ,a)!

Hopefully, sometimes an efficient checker exists.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Result is sometimes enough

Example : finding a non trivial divisor of an integer

(f ,n)

d

f(n) :=
“search d in [2,

√
n − 1]

such that d|n”

check (n,d) :=
d , 1 & d , n & d|n

But f(a) is often not sufficient.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Result is not always enough

Example : compute a gcd of two integers x and y

(f , x , y)

(d,u, v)

f(x , y) :=
extended euclidian
division

check (x , y ,d,u, v) :=
d|x & d|y &
d = u · x + v · y

gcd(x , y) is not enough!

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Result is not enough

The checker takes an extra hint as argument:

checkf ∈ A × B × H → bool

Certificate = result + hint

The producer algorithm must do an extra job :
in addition to compute the awaited result,
to compute a hint for the checker

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Generic Code and Certificates

Can the code+cert bundle be different for different consumers?

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

PCC with Generic Code and Certificates

There are situations where the code+certificate generated
by the producer is generic:

it may contain a large number of different uses. Often, only
a small fraction of them is required in each consumer.
the code may be self tuning. Depending on the features of
the platform, it may use different execution strategies.
sometimes, we may use partial evaluation techniques in
order to optimize code for a particular context.
also, sometimes the certificate needs to be instantiated with
platform-dependent information. A good example is
certificates related to execution time

Before being deployed in each consumer, the
code+certificate bundle may have to be instantiated to the
particular environment.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Incremental Proof-Carrying Code

Standard PCC: Full program and certificate are submitted
Incremental Certification: Only updates and incremental
certificate are submitted. The original program and
certificate must have been stored on disk.
Incremental Checking: Only check the new updates (and
indirectly affected information). Similar process to update
the original program and certificate and store on disk.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Incremental Proof-Carrying Code

Standard PCC: Full program and certificate are submitted
Incremental Certification: Only updates and incremental
certificate are submitted. The original program and
certificate must have been stored on disk.
Incremental Checking: Only check the new updates (and
indirectly affected information). Similar process to update
the original program and certificate and store on disk.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Incremental Proof-Carrying Code

Standard PCC: Full program and certificate are submitted
Incremental Certification: Only updates and incremental
certificate are submitted. The original program and
certificate must have been stored on disk.
Incremental Checking: Only check the new updates (and
indirectly affected information). Similar process to update
the original program and certificate and store on disk.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

PCC with Multiple Verifiers

TV

P

U

LV

PSfrag replacements

1. (M, A)

2. Sig{M, A}TV

3. (M, A, Sig{M, A}TV)

4. (M, A, B, Sig{M, A}TV)

5. Sig{M, B}LV

TV: Trusted Verifier LV: Local Verifier
P: Code Provider U: Code User

A: Global Security Policy B: Local Security Policy

This framework allows different consumers to have
different security policies.
It requires the use of PKI for trusting non-local verifiers.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Application frameworks: overview

Choice of the framework
A threat model
Security issues
Application certification
The actors

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Framework selection criteria

Global computing
Mobile code framework
Widely available on client devices

Established standard
Accepted by the industry
Evolving and following the evolution of technology

Open to reasoning on programs
Controlled execution environment
Code structured for analysis

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Which frameworks?

CLDC/MIDP
Available on many devices (over a billion)
Interesting subset of the Java language
Full framework, thousands of applications exist

CDC
Only available on high-end phones (smart phones)
Supports the entire Java language
More recent standardization

STIP
Available on very few devices
Dedicated to professional services

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Frameworks and requirements

Focus on CLDC/MIDP
Standardization is very active
MIDP 2.0 has been available for a while
Many additional API’s have been defined
MIDP is representative of our target
Already includes PCC (lightweight bytecode verifier)
Targets typical global computing client devices

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

A threat model for MIDP

Goods to be protected
Possible goals for attackers
Common attack types
Possible countermeasures

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Assets to be protected

Operator assets
Billable operations
Reputation
Network infrastructure

End-user assets
Money (through operator billing)
Private information
In particular, confidential information

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Goals of attackers

Make money
Send messages to a premium number

Steal sensitive information
Contact information (for spam)
Passwords, PIN codes, ...

Attack an operator
Try to damage its reputation

Perform a hacker stunt
Just showing off some attack skills

Perform a terrorist act
Take the entire network down at a given time

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Attack scenarios

Many attack scenarios are possible
Attacking the phone’s Java environment
Attacking the phone’s operating system or hardware
Social engineering

Not all of them are interesting
Some attacks are too sophisticated
Requirements are available from operators

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Attacking the Java VM

Identify bugs in the implementation
Bug in the VM or missing test in the verifier
Bug in the API implementation (buffer overflow, ...)

Exploit the bugs through specifically designed applications

Still a big potential
The quality of the implementations is not ideal
The attacker/developer has unlimited access to the device
The attack itself does not require any access (Trojan horse)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Attacking the OS

Interfering with the OS has many interests
Gaining access to loaded applications

Reading/modifying an application’s code
Reading/modifying an application’s data

Modifying system data
Modifying/adding a public key used to certify applications

Modifying system code
Removing some checks in the Java implementation

Was easy, becomes more difficult with time
More countermeasures are added (specific hardware)
Requires access to the device (out of scope)

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Social engineering

Manipulating the end-user to enable the attack
Very interesting attack for MIDP

The user must authorize some operations
Some messages may be difficult to understand

Good potential
The application may look perfectly legal
The application requires “normal” privileges (provide
personal information to play with friends, authorize network
connections to retrieve new levels)
No need to access the device directly

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Some countermeasures

Reactive countermeasures
Early detection (hotline monitoring)

Proactive countermeasures
Extensive application testing
Static analysis (checking a security policy)

In current certification schemes:
Java Verified is gaining ground

Functional testing, with standard requirements
Supported by manufacturers and operators

Security certification is starting
Code review for sensitive operator applications (such
applications have extended privileges)
Static analysis for some operators

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Security issues in MIDP 2.0

Many mechanisms are now available to applications
Making phone calls
Sending/receiving SMS and MMS (messaging)
Internet communication: http, https, sockets, datagram
Application auto invocation
Accessing Bluetooth and serial port
Recording video and/or audio
Accessing a user’s private information: contacts,
appointments, notes, etc.
Location information

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

MIDP 2.0 security

Sensitive operations require a permission
The application must request the permission
The platform decides whether or not to grant it

The decision process includes user interactions
The user decides on operations that incur a cost

Sending a SMS
Establishing a network connection

The user can manage its security policy, e.g. systematically
allowing/forbidding some operations

The decision process includes signature verification: some
permissions can only be granted to signed applications

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Are all issues addressed?

Basic issues are addressed
All sensitive operations must be authorized
Interaction with the user is under control

Typical threats are still present
Social engineering: always possible whenever there is an
interaction
Design/implementation bugs and weaknesses

Java does not provide a complete protection
Proprietary features exist

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

The actors (1)

Telecom operators
Support directly the cost of attacks
Ultimately responsible for the applications deployed
Define their own policies (portability, security, etc.)

Application developers
Need to deploy their applications
Need to show that they follow operator policies

End users
Want to protect their devices
Want to increase the choice of applications
Want to have a say in the security policy

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

The actors (2)

Tool vendors
Their motto: automated is beautiful

Testing houses
Their motto: manual is beautiful

Technology providers and stakeholders
The main one: Sun Microsystems

Their motto: Java is secure
Application security is not on their agenda

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Security requirements: overview

Categories of properties
Some properties of network connections
Analyzing restrictions on method invocation
Some challenges

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Categories of properties

Basic checks (methods used. . .)
Safety policies (exceptions. . .)
API usage (network connections, billable events. . .)
Resource usage (memory and time consumption,
restrictions on the values of some parameters)
Mandatory sequences of operations
Information flow (e.g. personal data must not be
exported/must only be exported to known hosts/to the
owner of the application)
Functional correctness

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Example of network properties

Connection types
All network connections are HTTP(S) connections
All network connections are secure

Connection destinations
All destination hosts are determined
The application only connects to its origin host

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

One example of network property

All network connections are HTTP connections
How are network connections initiated?

Connector.open(String url)
Connector.openInputStream(String url)
Manager.createPlayer(String url)
. . .

What are network connections?
URL’s starting with http, https, . . .
. . . and ssl, socket, datagram

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

The actual property

For all methods that open a network connection (there are
many such methods) restrict the value of the URL parameter

If the parameter value is unknown, property is violated or
undetermined
If the parameter starts with http://, property is satisfied
If the parameter starts with https://, ssl://, socket://,
datagram://, property is violated

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

API usage restrictions

Analyzing the values of arguments
Analyzing integral values: very often constants, thus quite
easy to analyze
Analyzing Strings and URLs

Strings are heavily used in MIDP
In particular, essential APIs are based on URLs
Analyzing string values is essential and difficult

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

API usage: restrictions on string parameters

Back to example: all network connections must be HTTP
connections

The URL is a constant string

Connection conn ;
conn = Connector . open (” h t t p : / / www. i n r i a . f r ”) ;

The analysis is simple, both in source and bytecode
Strings are immutable, so threads definitely not a problem

The URL is a concatenation, the required info is constant

Connection home ;
home = Connector . open (” h t t p : / / ” + host) ;

The source analysis is simple

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Analyzing strings: problems at bytecode level

The bytecode analysis is more complex
Concatenation is compiled with StringBuffer objects
StringBuffer objects are not immutable, and can be used
for other purposes

Connection home ;
S t r i n g B u f f e r sb = new S t r i n g B u f f e r (” h t t p : / / ”) ;
home = Connector . open (
sb . append (host) . t o S t r i n g ()) ;

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Analyzing strings: method calls

The URL is computed in another method
The analysis cannot be local to a method any more
The threads can become more of a problem
All accessible code is known, provided we work on a fixed
code base

Connection comm ;
/ / F i r s t sets the connect ion
u r l = myStuf f . computeURL () ;
/ / Then opens the connect ion

comm = Connector . open (u r l) ;

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Analyzing strings: arrays and containers

The URL is stored in an array or in a container
The analysis cannot be local to a method any more
The threads become a real problem
The content of the array/container must be analyzed
Difficult with arrays, vectors, and hashtables
Very difficult with record stores and files

Connection comm;
/ / Opens the connect ion

comm = Connector . open (u r l s [index]) ;

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Analyzing strings: unknown input

Two typical cases
The URL comes from another connection (web page)
The URL (or part of it) is entered by the user

Connection comm ;
/ / Opens the connect ion i f HTTP l i n k
i f (u r l . s t a r t s W i t h (” h t t p : ”))

comm = Connector . open (u r l) ;

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Information flow: which restrictions?

Personal data must not be exported
Nothing personal should reach the network

Personal data must not be exported in clear
Confidentiality protection against external attacks

Personal data must only be exported to known hosts
Protecting the destination of the data

Personal data must only be sent to the owner of the
application

Forcing the owner to take responsibility
Forcing SSL, in a connection to the owner’s server

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Application-specific security requirements

Security requirements for a particular application
MIDlet or platform component
In addition to platform-specific requirements

Application-specific security requirements can be
Specialized versions of platform-specific requirements
Additional requirements to protect assets of the application
Detailed prescription of specific behavior, rather than
generic restriction on behavior
Requires certification of functional properties

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Examples considered

Example MIDP applications
Instant messenger
Pocket Protector
E-voting Midlet

Example platform components
Access controller
Bytecode verifier
TCP/IP
SSH Midlet

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Pocket Protector: application

MIDlet for storing valuable data protected by password:
passwords, PIN code, credit card numbers, . . .
Uses the MIDP file system (Record store)

Example of security requirements:
The record store cannot be accessed
MIDlet creates only one file, with correct access rights
No access to file without first giving the master password
Second defense line: the data must remain secure
All data in the file must be encrypted

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Pocket Protector: analysis of requirements

MIDlet creates only one file, with correct access rights:
simple conditions on an API method invocation
All data in the record store must be encrypted

Case 1: A standard crypto API is used. Simple data flow
verification
Case 2: The crypto is inside the application. A formal
specification must be provided

No access to records without first giving the master
password

Concepts are not defined in the framework
A formal specification must be provided

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

SSH MIDlet

The SSH protocol provides some guarantees
e.g., confidentiality of traffic under some conditions
e.g., confidentiality/integrity of session (public) keys

A SSH MIDlet provides similar guarantees, provided
It implements SSH correctly
All assumptions underlying SSH security (e.g. random
generation) are valid

These provisions are security requirements: the first one
requires a detailed functional specification

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Not to forget

Well-known causes of attacks:
Exposed fields (i.e., any non-private field)
Exposed aliases
Subclassing (i.e., attacker defining a malicious subclass)

Simple countermeasures:
Use final fields and immutable objects
Use private fields
Respect behavioral subtyping
Use static analyses to detect uncaught exceptions,
aliasing, shared references, etc.

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Not to forge: safety vs. security

Standard requirement: exception freeness
The application never exits by throwing an exception
Sometimes restricted to some exceptions

This is not a security requirement
It is a safety requirement
It is related to the application working well

But
Bad exception handling is a classical origin of vulnerability
Good exception handling is a sign of quality

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Expressing properties

Which security properties?
Restrictions on API usage
Data/information flow within the application
Control flow within the application
Detailed functional specifications
Exception freeness

How to express these properties
Using types
Using logic

JML, using annotations at the source code level
BML, using annotations at the bytecode level

Generating annotations from purpose-specific formalisms

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Restrictions on API usage using BML/JML

p u b l i c c lass Connection {
/ /@ p u b l i c ghost i n t nr of SMS ;
/ /@ requ i res u r l . s t a r t s W i t h (sms : / /) &
nr of SMS < 10 ;

/ /@ ensures nr of SMS = \ old (nr of SMS)+1 ;
p u b l i c open (S t r i n g u r l) . . .
}

May/June 2007 Formal methods for software security

Motivations
Java security

Proof Carrying Code
Mobius project

PCC for global computing
Application frameworks
Security requirements

Challenges

Framework-specific rules are well-defined, but . . .
Their translation into programming rules is not obvious
Programmers are difficult to control
The checks often remain complex and/or
incomplete/unsound
The API is large and costly to model, whereas API
behavior often requires specific modeling

May/June 2007 Formal methods for software security

	Motivations
	Overview of Mobius project
	Reliability and security

	Java security
	Stack inspection
	Bytecode verification

	Proof Carrying Code
	Mobius project
	PCC for global computing
	Application frameworks
	Security requirements

